

Cambridge International AS & A Level

PHYSICS P2

TOPIC WISE QUESTIONS + ANSWERS | COMPLETE SYLLABUS

Appendix A

Answers

$1.\ 9702_m19_qp_22\ Q:\ 1$

	Answer	· On	Mark
(a)	kilogram / kg		B1
	kelvin / K	70	B1
(b)	units for v : m s ⁻¹ and units for F : kg m s ⁻²	40	C1
	units for e: As		C1
	units for μ . m s ⁻¹ A s / kg m s ⁻²		A1
	$= A kg^{-1} s^2$		

2. 9702_s18_qp_22 Q: 1

	Answer	Mark
(a)	rate of change of momentum	B1
(b)	kgms ⁻²	A1
(c)	units for Q: As and for r. m	C1
	units for $\varepsilon = (As \times As)/(kgms^{-2} \times m^2)$	A1
	$= A^2 kg^{-1}m^{-3}s^4$	

$3.\ 9702_w17_qp_23\ Q:\ 1$

	Answer	Mark
(a)(i)	work (done) / time (taken) or energy (transferred) / time (taken)	B1
(a)(ii)	Correct substitution of base units of all quantities into any correct equation for power. Examples:	A1
	$(P = E/t \text{ or } W/t \text{ gives}) \text{ kg m}^2 \text{s}^{-2}/\text{s} = \text{kg m}^2 \text{s}^{-3}$	
	$(P = Fs/t \text{ or } mgh/t \text{ gives}) \text{ kg m s}^{-2} \text{m/s} = \text{kg m}^2 \text{s}^{-3}$	
	$(P = \frac{1}{2}mv^2/t \text{ gives}) \text{ kg } (\text{m s}^{-1})^2/\text{ s} = \text{kg m}^2\text{s}^{-3}$	
	$(P = Fv \text{ gives}) \text{ kg m s}^{-2} \text{ m s}^{-1} = \text{kg m}^2 \text{s}^{-3}$	
	$(P = VI \text{ gives}) \text{ kg m}^2 \text{s}^{-2} \text{ A}^{-1} \text{s}^{-1} \text{ A} = \text{kg m}^2 \text{s}^{-3}$	
(b)(i)	units of A: m ² and units of T: K	C1
	units of k : kg m ² s ⁻³ / m ² K ⁴ = kg s ⁻³ K ⁻⁴	A1
(b)(ii)	curve from the origin with increasing gradient	B1

M1

Α1

C1

[2]

[2]

4. 9702_s15_qp_21 Q: 1

=
$$kg m s^{-2} \times m s^{-1} = kg m^2 s^{-3}$$
 A1 [2]

(b) power =
$$VI$$
 [or V^2/R and $V = IR$ or I^2R and $V = IR$]

(units of
$$V$$
:) $kg m^2 s^{-3} A^{-1}$ B1 [2]

(a) energy or
$$W$$
: $kg m^2 s^{-2}$

or power or P: kg m² s⁻³

intensity or I: kg m 2 s $^{-2}$ m $^{-2}$ s $^{-1}$ (from use of energy expression)

 $kg m^2 s^{-3} m^{-2}$ (from use of power expression)

indication of simplification to kg s⁻³

(b) (i) ρ : kg m⁻³, c: m s⁻¹, f: s⁻¹, x_0 : m

substitution of terms in an appropriate equation and simplification to show *K* has no units

(ii) $I = 20 \times 1.2 \times 330 \times (260)^2 \times (0.24 \times 10^{-9})^2$

$$= 3.1 \times 10^{-11} \, (\text{W m}^{-2})$$

$$= 31 (30.8) \text{ pW m}^{-2}$$
 A1 [3]

6. 9702_w19_qp_22 Q: 1

	Answer	Mark
(a)	scalar quantity has (only) magnitude	B1
	vector quantity has magnitude and direction	B1
(b)(i)	E =FIQ	C1
	$= kg m s^{-2} / A s = kg m A^{-1} s^{-3}$	A1
(b)(ii)	$b = Q/x^2E$	C1
	$= A s / m^2 kg m A^{-1} s^{-3}$	
	= A ² s ⁴ kg ⁻¹ m ⁻³	A1

$7.\ 9702_s18_qp_21\ Q{:}\ 1$

	Answer	Mark
(a)	a scalar has magnitude (only)	B1
	a vector has magnitude and direction	B1
(b)	power: scalar temperature: scalar momentum: vector (two correct 1 mark, all three correct 2 marks)	B2
(c)(i)	arrow labelled R in a direction from 5° to 20° north of west	B1
(c)(ii)	$v^2 = 28^2 + 95^2 - (2 \times 28 \times 95 \times \cos 115^\circ)$ or $v^2 = [(95 + 28\cos 65^\circ)^2 + (28\sin 65^\circ)^2]$	C1
	$v = 110 \text{ ms}^{-1} (109.8 \text{ ms}^{-1})$	A1
	or (scale diagram method)	
	triangle of velocities drawn	(C1)
	$v = 110 \mathrm{m}\mathrm{s}^{-1} (\mathrm{allow}108 - 112\mathrm{m}\mathrm{s}^{-1})$	(A1)

$8.\ 9702_s17_qp_23\ Q:\ 1$

	Answer	Mark
(a)(i)	R = 7(.0) N	B1
(a)(ii)	R = 13 N	B1
(b)(i)	forces resolved: 18 sin 65° (vertical) and 55 + 18 cos 65° (horizontal) or scale drawing: correct triangle drawn for forces	B1
	$F = [(18 \sin 65^\circ)^2 + (55 + 18 \cos 65^\circ)^2]^{1/2} = 65 (64.7) \text{N}$ or scale drawing: scale given, length of resultant given correctly, $\pm 1 \text{N}$	A1
(b)(ii)	angle = tan ⁻¹ [18 sin 65° / (55 + 18 cos 65°)] = tan ⁻¹ (16.3 / 62.6) or scale drawing: correct angle measured/direction correct on diagram below the 55 N force	C1
	angle = 15 (14.6) $^{\circ}$ (below the 55 N force) or scale drawing: angle = 15 $^{\circ}$ \pm 1 $^{\circ}$	A1
(c)	(resultant) force = mass × acceleration	C1
	80 – 65 = 2.7a	C1
	$a = 5.6 \text{ m s}^{-2} [5.7 \text{ if } 64.7 \text{ N used from (i)}]$	A1

$$9.9702 ext{ s16 qp } 23 ext{ Q: 1}$$

(a)	scalars: energy, power and time	Α1

[3]

Α1

(ii) 1. average speed (=
$$200/27$$
) = $7.4 \,\mathrm{m\,s^{-1}}$

2. resultant displacement (=
$$[120^2 + 80^2]^{1/2}$$
) = 144 (m)

average velocity (=
$$144/27$$
) = $5.3(3) \,\text{m s}^{-1}$

direction (=
$$tan^{-1}80/120$$
) = 34° (33.7) A1 [3]

 $(=6.52 \times 10^{-13} =) 0.65(2) pm$

(a)
$$v = f\lambda$$

(b)
$$t = (8.5 \times 10^{16})/(3.0 \times 10^{8})$$

$$(= 2.83 \times 10^8 =) 0.28(3) \,\text{Gs}$$
 A1 [2]

(ii) triangle of velocities completed (i.e. correct scale diagram) or correct working given C1 e.g.
$$[14^2 + 8.0^2 - 2(14)(8.0) \cos 60^\circ]^{1/2}$$
 or $[(14 - 8.0 \cos 60^\circ)^2 + (8.0 \sin 60^\circ)^2]^{1/2}$

$11.\ 9702_m20_qp_22\ Q:\ 1$

	Answer	Mark
(a)	time (electric) current allow amount of substance allow luminous intensity	B2
	any two of the above quantities, 1 mark each	
(b)(i)	$g = (4\pi^2 \times 1.50) / (2.48^2)$ = 9.63 m s ⁻²	A1
(b)(ii)	percentage uncertainty = $2 + (3 \times 2)$ or fraction uncertainty = $0.02 + (0.03 \times 2)$	C1
	percentage uncertainty = 8%	A1
(b)(iii)	absolute uncertainty = 0.08×9.6 = 0.8 m s^{-2}	A1

$12.\ 9702_s20_qp_21\ Q{:}\ 1$

	Answer	Mark
(a)	(work =) force × displacement	C1
	units: $kg m s^{-2} \times m = kg m^2 s^{-2}$	A1
(b)(i)	units of Q: As	C1
	units of C: kg ⁻¹ m ⁻² A ² s ⁴	A1
(b)(ii)	e.g. reading scale from different angles (wrongly) interpolating between scale readings/divisions	B1
	2. e.g. zero error wrongly calibrated scale	B1

$13.\ 9702_s19_qp_22\ Q{:}\ 1$

	Answer	Mark
(a)	absolute uncertainty = $(1.6 / 100) \times 0.0125$ = 2×10^{-4} m	A1
(b)(i)	$p = (4 \times 0.38) / (\pi \times 0.0125^{2})$ $= 3100 \text{ N m}^{-2}$	A1
(b)(ii)	percentage uncertainty = $2.8 + (2 \times 1.6)$ (= 6%) or fractional uncertainty = $0.028 + (2 \times 0.016)$ (= 0.06)	C1
	absolute uncertainty = 0.06 × 3100 = 190 N m ⁻² (allow to 1 significant figure)	A1

14. 9702_w19_qp_21 Q: 1

	Answer	Mark
(a)(i)	mass in range 1–20 g	A1
(a)(ii)	wavelength in range 1 \times 10 ⁻⁸ m to 4 \times 10 ⁻⁷ m	A1
(b)(i)	$T = 2\pi \times (200 \times 10^{-3} / 25)^{0.5}$ $= 0.56 \text{ s}$	A1
(b)(ii)	percentage uncertainty = (2% + 8%) / 2 (= 5%) or fractional uncertainty = (0.02+0.08) / 2 (= 0.05)	C1
	$\Delta T = 0.56 \times 0.05$ = 0.028 (s)	C1
	$T = (0.56 \pm 0.03) \text{ s}$	A1

15. 9702_s18_qp_23 Q: 1

	Answer	Mark
(a)(i)	zero error or wrongly calibrated scale	B1
(a)(ii)	reading scale from different angles or wrongly interpolating between scale readings/divisions	B1
(b)(i)	$P=V^2/R$ or $P=VI$ and $V=IR$	C1
	$P = 5.0^2/125 \text{ or } 5.0 \times 0.04 \text{ or } (0.04)^2 \times 125$	A1
	= 0.20 W	
(b)(ii)	$%V = 2\%$ or $\Delta V/V = 0.02$	C1
	$%P = (2 \times 2\%) + 3\%$ or $%P = (2 \times 0.02 + 0.03) \times 100$ = 7%	A1
(b)(iii)	absolute uncertainty in $P = (7/100) \times 0.20$ = 0.014	C1
	power = $0.20 \pm 0.01 \text{W}$ or $(2.0 \pm 0.1) \times 10^{-1} \text{W}$	A1

16. 9702_s17_qp_21 Q: 1

	Answer	Mark
(a)	(stress =) force / area or kg m s ⁻² / m ²	B1
	= kg m ⁻¹ s ⁻²	A1
(b)(i)	$0.58 = 2\pi \times [(4 \times 0.500 \times 0.600^{3}) / (E \times 0.0300 \times 0.00500^{3})]^{0.5}$	C1
	$E = [4\pi^2 \times 4 \times 0.500 \times (0.600)^3] / [(0.58)^2 \times 0.0300 \times (0.00500)^3]$	C1
	= 1.35 × 10 ¹⁰ (Pa)	
	= 14 (13.5) GPa	A1
(b)(ii)1.	(accuracy determined by) the closeness of the value(s)/measurement(s) to the true value	B1
	(precision determined by) the range of the values/measurements	B1
(b)(ii)2.	l is (cubed so) 3 × (percentage/fractional) uncertainty and T is (squared so) 2 × (percentage / fractional) uncertainty and (so) l contributes more	B1

17. 9702_s17_qp_22 Q: 1

	Answer	Mark
(a)	kelvin, mole, ampere, candela any two	B1
(b)	use of resistivity = RA/l and $V = IR$ (to give $\rho = VA/Il$)	C1
	units of V: (work done / charge) kg m² s⁻² (A s)⁻¹	C1
	units of resistivity: $(kg m^2 s^{-3} A^{-1} A^{-1} m)$ = $kg m^3 s^{-3} A^{-2}$	A1
	or	
	use of $R = \rho L/A$ and $P = I^2 R$ (gives $\rho = PA/I^2 L$)	(C1)
	units of P : kg m ² s ⁻³	(C1)
	units of resistivity: $(kg m^2 s^{-3} \times m^2) / (A^2 \times m)$ = $kg m^3 s^{-3} A^{-2}$	(A1)
(c)(i)	$\rho = (RA/I)$	C1
	$= (0.03 \times 1.5 \times 10^{-6})/2.5 = 1.8 \times 10^{-8}$	C1
	= 18 nΩ m	A1
(c)(ii)	1. precision is determined by the range in the measurements/values/readings/data/results	B1
	2. metre rule measures to \pm 1 mm and micrometer to \pm 0.01 mm (so there is less (percentage) uncertainty/random error)	B1

18. 9702_w17_qp_22 Q: 1

	Answer	Mark
(a)(i)	micrometer (screw gauge)/digital calipers	B1
(a)(ii)	take several readings (and average)	M1
	along the wire or around the circumference	A1
(b)(i)	σ = 4 × 25/[π × (0.40 × 10 ⁻³) ²] = 1.99 × 10 ⁸ N m ⁻² or σ = 25/[π × (0.20 × 10 ⁻³) ²] = 1.99 × 10 ⁸ N m ⁻²	A1
(b)(ii)	%F = 2% and %d = 5% or $\Delta F/F = \frac{0.5}{25}$ and $\Delta d/d = \frac{0.02}{0.4}$	C1
	$\% \sigma = 2\% + (2 \times 5\%)$ or $\% \sigma = [0.02 + (2 \times 0.05)] \times 100$ $\% \sigma = 12\%$	A1
(b)(iii)	absolute uncertainty = $(12/100) \times 1.99 \times 10^{8}$ = 2.4×10^{7}	C1
	σ = 2.0 × 10 ⁸ ± 0.2 × 10 ⁸ N m ⁻² or 2.0 ± 0.2 × 10 ⁸ N m ⁻²	A1

19. 9702 m16 qp 22 Q: 1

(a)	metre rule / tape measure	B1

(b) (i)
$$V = [(1.8 \times 126 \times 10^{-2}) / 5.1 \times 10^{-3}]^{1/2}$$
 C1
= 21.1 (m s⁻¹) A1

(ii) percentage uncertainty = 4% or fractional uncertainty = 0.04 C1
$$\Delta v = 0.04 \times 21.1$$
 = 0.84 C1 $v = 21.1 \pm 0.8 \, (\text{m s}^{-1})$

(a) (i)
$$(50 \text{ to } 200) \times 10^{-3} \text{kg or } (0.05 \text{ to } 0.2) \text{kg}$$
 B1 [1]

(b) density = mass/volume or
$$\rho = M/V$$

$$V = [\pi(0.38 \times 10^{-3})^{2} \times 25.0 \times 10^{-2}]/4 \ (= 2.835 \times 10^{-8} \text{ m}^{3})$$

$$\rho = (0.225 \times 10^{-3})/2.835 \times 10^{-8}$$

= 7940 (kg m⁻³) A1

$$\Delta \rho / \rho = 2(0.01/0.38) + (0.1/25.0) + (0.001/0.225) [= 0.061]$$
 or $\% \rho = 5.3\% + 0.40\% + 0.44\% (= 6.1\%)$ C1

$$\Delta \rho = 0.061 \times 7940 = 480 \text{ (kg m}^{-3})$$

density =
$$(7.9 \pm 0.5) \times 10^3 \text{kg m}^{-3}$$
 or $(7900 \pm 500) \text{kg m}^{-3}$ A1 [5]

- (a) systematic: the reading is larger or smaller than (or varying from) the true reading by a constant amount B1
 - random: scatter in readings about the true reading B1 [2]
- (b) precision: the size of the smallest division (on the measuring instrument)
 or
 0.01 mm for the micrometer
 B1
 - accuracy: how close (diameter) value is to the true (diameter) value B1 [2]

 $22.\ 9702_s15_qp_23\ Q\hbox{:}\ 4$

(a) (i) diameter and extension: micromet	er (screw gauge) or digital calipers	B1	
length: tape measure or metre rule	e	B1	
load: spring balance or Newton me	eter	B1	[3]
	ors or to plot a graph to check for zero n or to see if limit of proportionality is	B1	[1]
(b) plot a graph of F against e and determ	ine the gradient	B1	
$E = (gradient \times l)/[\pi d^2/4]$		B1	[2]
23. 9702_w15_qp_21 Q: 1		0	
(a) temperature current (allow amount of substance, luminous	intensity)	B1 B1	[2]
(b) (i) 1. $E = (stress/strain =) [force/strain =)$	area] / [extension/original length]		
units of stress: kg m s ⁻² /m ² an	nd no units for strain	B1	
units of E : kg m ⁻¹ s ⁻²		A0	[1]

2. units for T: s, l: m and M: kg

$$K^2 = T^2 E / M l^3$$
 hence units: $s^2 kg m^{-1} s^{-2} / kg^3 (= m^{-4})$ C1

units of
$$K$$
: m^{-2} A1 [2]

(ii) % uncertainty in
$$E = 4\%$$
 (for T^2) + 0.6% (for l^3) + 0.1% (for M) + 3% (for K^2) = 7.7%

$$E = [(1.48 \times 10^{5})^{2} \times 0.2068 \times (0.892)^{3}]/(0.45)^{2}$$

= 1.588 \times 10¹⁰ C1

7.7% of
$$E = 1.22 \times 10^9$$

$$E = (1.6 \pm 0.1) \times 10^{10} \text{ kg m}^{-1} \text{ s}^{-2}$$
 A1 [4]

$24.\ 9702_s20_qp_23\ Q:\ 1$

	Answer	Mark
(a)	similarity: both have magnitude	B1
	difference: distance is a scalar/does not have direction or displacement is a vector/has direction	В1
(b)(i)	the measurements have a small range	B1
(b)(ii)	the (average of the) measurements is not close to the true value	B1

25. 9702_{2} 2 2 2 2 2 2 2 2 2 2

	Answer	Mark
(a)	density and temperature indicated as scalars	B1
	acceleration and momentum indicated as vectors	B1
(b)(i)	decelerates or speed/velocity decreases	B1
(b)(ii)	speed = $(\Delta)d/(\Delta)t$ or gradient	C1
	= e.g. (0.56 – 0.20) / 1.5 = 0.24 ms ⁻¹	A1
(c)	displacement is zero (so) average velocity is zero	B1

26. 9702_s19_qp_21 Q: 1

	Answer	Mark
(a)	(velocity =) change in displacement / time (taken)	B1
(b)(i)	$k = [1.29 \times (3.3 \times 10^2)^2] / 9.9 \times 10^4$	C1
	= 1.4	A1
(b)(ii)	percentage uncertainty = $(3 \times 2) + 4 + 2$ (= 12%) or fractional uncertainty = $(0.03 \times 2) + 0.04 + 0.02$ (= 0.12)	C1
	$\Delta k = 0.12 \times 1.42$	C1
	= 0.17 (allow to 1 significant figure)	
	k = 1.4 ± 0.2	A1

 $27.\ 9702_w19_qp_22\ Q\hbox{:}\ 2$

	Answer	Mark
(a)	change in velocity / time (taken)	A1
(b)(i)	weight » (force due to) air resistance or (force due to) air resistance is negligible compared to weight	B1
(b)(ii)	$s = ut + \frac{1}{2}at^{2}$ $0.280 = \frac{1}{2} \times 9.81 \times t^{2}$	C1
	t = 0.24 s	A1

	Answer	Mark
(b)(iii)	total distance fallen = 0.280 + 0.080 = 0.360	C1
	$0.360 = \frac{1}{2} \times 9.81 \times t^2$	
	t=0.27 s	
	time taken = 0.27 - 0.24	A1
	= 0.03 s	
	or	
	$v = 9.81 \times 0.239$ or $(2 \times 9.81 \times 0.280)^{0.5}$ or $(2 \times 0.280) / 0.239$	(C1)
	= 2.34 (m s ⁻¹)	
	$0.080 = 2.34t + \frac{1}{2} \times 9.81 \times t^2$	(A1)
	solving quadratic equation gives $t = 0.03$ s	
	allow any correct method using equations of uniform accelerated motion	
(c)	(average) resultant force/acceleration/speed/velocity (of low-density ball) is less	B1
	(so) time interval is longer	B1

 $28.\ 9702_m18_qp_22\ Q{:}\ 1$

	Answer	Mark	
(a)	acceleration: vector speed: scalar power: scalar All three correct scores 2 marks. Only two correct scores 1 mark.	B2	
(b)(i)	time = 0.43 / 1.1 = 0.39 s	A1	
(b)(ii)	$s = ut + \frac{1}{2}at^2$ = $\frac{1}{2} \times 9.81 \times 0.39^2$	C1	
	= 0.75 m	A1	
(b)(iii)	1 horizontal line at a non-zero value of a.	B1	
	2 curved line from origin with increasing gradient.	B1	
(c)	acceleration (of free fall) is unchanged / not dependent on mass and so no effect (on time taken).	A1	

[1]

 $29.\ 9702\ \ w17\ \ qp\ \ 21\ \ Q:\ 2$

	Answer	Mark
(a)	30 ms ⁻¹ = 108kmh ⁻¹ or 100kmh ⁻¹ = 28ms ⁻¹	Bf
	and so exceeds speed limit	
(b)	acceleration = gradient or $\Delta v/(\Delta)t$ or $(v-u)/t$	C-
	e.g. acceleration = (24 – 20) / 12 [other points on graph line may be used]	A ²
	= 0.33 ms ⁻²	
(c)	distance travelled by Q = ½ × 12 × 30 (= 180 m)	C1
	distance travelled by P = ½ × (20 + 24) × 12 (= 264 m)	C1
	distance between cars = 264 – 180	A1
	= 84 m	
(d)	30 – 24 = 6ms ⁻¹	C1
	'extra' time T = 84/6 (= 14 s)	
	or	
	180 + 30 <i>T</i> = 264 + 24 <i>T</i>	
	'extra' time T = 84/6 (= 14 s)	
	t = 12 + 14 = 26 s	A1

 $30.\ 9702_s16_qp_21\ Q:\ 2$

(c) t = 9.2/9.81 = 0.94 (0.938)s

(a) (i) horizontal component (=
$$12\cos 50^{\circ}$$
) = $7.7 \,\mathrm{m \, s^{-1}}$

(ii) vertical component (=
$$12 \sin 50^{\circ}$$
 or $7.7 \tan 50^{\circ}$) = $9.2 \,\mathrm{m \, s^{-1}}$ A1 [1]

(b)
$$v^2 = u^2 + 2as \text{ and } v = 0$$
 or $mgh = \frac{1}{2}mv^2$ or $s = v^2 \sin^2 \theta / 2g$

$$9.2^2 = 2 \times 9.81 \times h$$
 hence $h = 4.3 (4.31)$ m A1 [2]

alternative methods using time to maximum height of 0.94 s:

$$s = ut + \frac{1}{2}at^2$$
 and $t = 0.94$ (s) (C1)

$$s = 9.2 \times 0.94 - \frac{1}{2} \times 9.81 \times 0.94^2$$
 hence $s = 4.3$ m (A1)

or
$$s \neq vt - \frac{1}{2}at^2$$
 and $t = 0.94(s)$ (C1)

$$s = \frac{1}{2} \times 9.81 \times 0.94^2$$
 hence $s = 4.3$ m (A1)

or

$$s = \frac{1}{2}(u + v)t$$
 and $t = 0.94$ (s) (C1)
 $s = \frac{1}{2} \times 9.2 \times 0.94$ hence $s = 4.3$ m (A1)

horizontal distance =
$$0.938 \times 7.7$$
 (= 7.23 m)

displacement =
$$[4.3^2 + 7.23^2]^{1/2}$$

$$= 8.4 \,\mathrm{m}$$
 A1 [4]

C1

31. 9702_s15_qp_21 Q: 2

(a) speed = distance/time and velocity = disp	lacement/time	B1	
speed is a scalar as distance has no direct velocity is a vector as displacement has displa		В1	[2]
(b) (i) constant acceleration or linear/uniform	n increase in velocity until 1.1s	В1	
rebounds or bounces or changes dire	ction	В1	
decelerates to zero velocity at the sar	ne acceleration as initial value	B1	[3]
(ii) $a = (v - u)/t$ or use of gradient impli	ed	C1	
= (8.8 + 8.8)/1.8 or appropriate va	lues from line or = $(8.6 + 8.6)/1.8$	B1	
$= 9.8 (9.78) \mathrm{m}\mathrm{s}^{-2}$	or = $9.6 \mathrm{m s^{-2}}$	A1	[3]
(iii) 1. distance = first area above graph +	second area below graph	C1	
$= (1.1 \times 10.8)/2 + (0.9 \times 8)$	3.8)/2 (= 5.94 + 3.96)	C1	
= 9.9 m		A1	[3]
2. displacement = first area above gr	aph – second area below graph	C1	
= (1.1 × 10.8)/2 – (0).9 × 8.8)/2		
= 2.0 (1.98) m	40	A1	[2]
(iv) correct shape with straight lines and a	all lines above the time axis or all below	M1	
correct times for zero speeds (0.0, 1.0 $(10.8 \mathrm{ms^{-1}}$ at 1.1s and $8.8 \mathrm{ms^{-1}}$ at 1.2		A1	[2]

32. 9702_s15_qp_23 Q: 1

	_	_ 		
(a)	150	or 1.5×10^2 Gm	A1	[1]
(b)	dist	ance = $2 \times (42.3 - 6.38) \times 10^6 (= 7.184 \times 10^7 \mathrm{m})$	C1	
	(tim	$e = 7.184 \times 10^7 / (3.0 \times 10^8) = 0.24 (0.239) s$	A1	[2]
(c)	unit	s of pressure <i>P</i> : $kg m s^{-2}/m^2 = kg m^{-1} s^{-2}$	M1	
	unit	s of density ρ : kg m ⁻³ and speed v : m s ⁻¹	M1	
		plification for units of C : $C = v^2 \rho/P$ units: $(m^2 s^{-2} kg m^{-3})/kg m^{-1} s^{-2}$ cancelling to give no units for C	A1	[3]
(d)	ene	ergy and power (both underlined and no others)	A1	[1]
(e)	(i)	vector triangle of correct orientation	M1	
		three arrows for the velocities in the correct directions	A1	[2]
	(ii)	length measured from scale diagram $5.2 \pm 0.2\text{cm}$ or components of boat speed determined parallel and perpendicular to river flow	C1	
		velocity = $2.6 \text{ m s}^{-1} \text{ (allow } \pm 0.1 \text{ m s}^{-1}\text{)}$	A1	[2]

 $33.\ 9702_w20_qp_21\ Q\hbox{:}\ 3$

	Answer	Mark
(a)	(force =) rate of change of momentum	B1
(b)(i)	$E = \frac{1}{2}mv^2$ or $\frac{1}{2} \times 0.062 \times 3.8^2$ or $\frac{1}{2} \times 0.062 \times 1.7^2$	C1
	loss of KE = $\frac{1}{2} \times 0.062 \times (3.8^2 - 1.7^2)$ = 0.36 J	A1
(b)(ii)	$p = mv$ or 0.062×3.8 or 0.062×1.7	C1
4 4	change in momentum = 0.062 × (1.7 + 3.8) = 0.34 N s	A1
(b)(iii)	(average resultant force =) $0.34/0.081 = 4.2$ (N) or (average resultant force =) $0.062 \times (1.7 + 3.8)/0.081 = 4.2$ (N)	A1
(b)(iv)	1. average force = 4.2 + (0.062 × 9.81)	A1
	= 4.8 N	
	2. average force = 4.8 N	A1

$34.\ 9702_s19_qp_21\ Q:\ 2$

	Answer	Mark
(a)	(momentum =) mass × velocity	B1
(b)(i)	time = 40 ms	A1
(b)(ii)	(the magnitude of the acceleration is) constant	В1
	2. (the magnitude of the acceleration is) zero	B1
(c)	$F = \Delta p / (\Delta)t$ or $F = \text{gradient}$	C1
	e.g. $F = 0.50/40 \times 10^{-3}$	A1
	= 13 N	
(d)	horizontal line from (0, 0.40) to (60, 0.40)	В1
	straight line from (60, 0.40) to (100, -0.10)	B1
	horizontal line from (100, -0.10) to (160, -0.10)	B1

$35.\ 9702_w17_qp_21\ Q:\ 1$

	Answer	Mark
(a)	units of F: kgms ⁻²	C1
	units of ρ : kg m ⁻³ and units of ν : ms ⁻¹	C1
	units of K: $kgms^{-2}/[kgm^{-3}(ms^{-1})^2]$ = m^2	A1
(b)(i)	$K\rho = 1.5/33^2$	C1
	= 1.38×10^{-3} $F_D = 1.38 \times 10^{-3} \times 25^2$ or $F_D / 1.5 = 25^2 / 33^2$ $F_D = 0.86$ N	A1
(b)(ii)	a = (1.5 – 0.86)/(1.5/9.81) or a = 9.81 – [0.86/(1.5/9.81)]	C1
	a = 4.2 ms ⁻²	A1
(c)	initial acceleration is g/9.81 (ms ⁻²)/acceleration of free fall	B1
	acceleration decreases	B1
	final acceleration is zero	B1

 $36.\ 9702_s20_qp_22\ Q:\ 2$

	Answer	Mark
(a)(i)	area = $ut + \frac{1}{2}(v - u)t$ or area = $vt - \frac{1}{2}(v - u)t$ or area = $\frac{1}{2}(u + v)t$	A1
(a)(ii)	displacement	A1
(b)(i)	$u = 15 \sin 60^{\circ} (= 13 \text{ m s}^{-1})$	C1
	$t = 15 \sin 60^{\circ} / 9.81$	C1
	= 1.3 s	A1
(b)(ii)	the force in the horizontal direction is zero	B1
(b)(iii)	(velocity =) $15 \cos 60^{\circ} = 7.5 \text{ (m s}^{-1)}$ or (velocity =) $15 \sin 30^{\circ} = 7.5 \text{ (m s}^{-1)}$	A1
(c)(i)	$p = mv$ or 0.40×7.5 or 0.40×4.3	C1
	$\Delta p = 0.40 (7.5 + 4.3)$ = 4.7 kg m s ⁻¹	A1
(c)(ii)	force = $4.7/0.12$ or $0.40 \times [(7.5 + 4.3)/0.12]$	A1
	= 39 N	

 $37. 9702 w20 qp_23 Q: 3$

	Answer	Mark
(a)	$s = \frac{1}{2}at^2$	C1
	$57 = \frac{1}{2} \times 9.81 \times t^2$ and $t = 3.4$ (s)	A1
(b)	horizontal distance = 41 × 3.4	A1
	= 140 m	
(c)	$(displacement)^2 = 57^2 + 140^2$	C1
	displacement = (57 ² + 140 ²) ^{0.5}	A1
	= 150 m	
(d)	straight line from the origin with positive gradient	B1
e)	$(1480 - m) \times 0.340 = m \times 41.0$	C1
	m = 12.2 kg	A1
4 -9	or	
	$m_c 0.34 = m_b 41$ and $m_c + m_b = 1480$	(C1)
	$m_{\rm c} = (41/0.34)m_{\rm b}$	(A1)
	$(41/0.34)m_b + m_b = 1480$	
	$m_{\rm b} = 12.2 {\rm kg}$	
(f)	acceleration (of free fall) is unchanged/is not dependent on mass	M1
	(so) no change (to the graph)	A1

$38.\ 9702_w18_qp_21\ Q:\ 2$

	Answer	Mark
(a)	$(p=) mv$ or 4.0×45 or 2.0×85 or $89v$	C1
	$(4.0 \times 45) - (2.0 \times 85) = 89 v$ $v = 0.11 \mathrm{ms}^{-1}$	A1
(b)(i)	 speed of approach = 47 m s⁻¹ speed of separation = 0 	A1
(b)(ii)	speed of separation less than/not equal to speed of approach and so inelastic collision	A1
(c)	force is equal to rate of change of momentum	B1
	force on ball (by block) equal and opposite to force on block (by ball) so rates of change of momentum are equal and opposite	B1
	or	
	force on ball (by block) equal and opposite to force on block (by ball)	(B1)
	force is equal to rate of change of momentum so rates of change of momentum are equal and opposite	(B1)

$39.\ 9702_s17_qp_23\ Q\hbox{:}\ 2$

	Answer	Mark
(a)	(resultant) force is proportional/equal to the rate of change of momentum	B1
(b)(i)	change in momentum = $m(v_2 - v_1)$	C1
	= 0.84 × (8.8 – 4.2)	
	$= 3.9 (3.86) \text{ kg m s}^{-1}$	A1
(b)(ii)	F = (3.9 / 4.0) = 0.97 (0.965) N	A1
(c)(i)	change in momentum for A: $0.84 \times (4.7 - 8.8) = -3.4 \ (3.44)$ change in momentum for B: $0.73 \times (4.7 - 0) = 3.4 \ (3.43)$	M1
	change in momentum for B is equal and opposite to A	A1
(c)(ii)	change in momentum equal (for A and B)	M1
	force is change in momentum / time and time (of collision) is the same hence force on A and B equal and opposite as for Newton's third law	A1
(c)(iii)	inelastic as relative speed of approach not equal to relative speed of separation	B1

40. 9702_w17_qp_23 Q: 3

		Answer	Mark
(a)	sum/total momentum (of sy or sum/total momentum befor	stem of bodies) is constant e = <u>sum/total</u> momentum after	M1
	for an isolated system/no (r	esultant) <u>external</u> force	A1
(b)(i)	p = mv		C1
	$(4.0 \times 6.0 \times \sin \theta) - (12 \times 3.0)$ or $(m_A v_A \times \sin \theta) - (m_B v_B \times \sin \theta)$,	M1
	θ = 61°		A1

	Answer	Mark
(b)(ii)	shows the horizontal momentum component of ball A or of ball B as $(4.0 \times 6.0 \times \cos \theta)$ or $(12 \times 3.5 \times \cos 30^{\circ})$	C1
	$(4.0 \times 6.0 \times \cos 61^{\circ}) + (12 \times 3.5 \times \cos 30^{\circ}) = 4.0v \text{ so } v = 12 \text{ (m s}^{-1})$	A1
(b)(iii)	initial $E_{\rm K}$ (= $\frac{1}{2} \times 4.0 \times 12^2$) = 290 (288) (J)	M1
	final E_K (= ½ × 4.0 × 6.0 ² + ½ × 12 × 3.5 ²) = 150 (145.5) (J)	M1
	(initial E_K > final E_K) so inelastic [both M1 marks required to award this mark]	A1

		(initial L _K > initial L _K) so inelastic [both with marks required to award this mark]		
41. 9702	2_s1	6_qp_23 Q: 5		·
(a)	the	total momentum of a system (of colliding particles) remains constant	M1	
		vided there is no resultant external force acting on the system/isolated or sed system	A1	[2]
(b)	(i)	the <u>total</u> kinetic energy before (the collision) is equal to the total kinetic energy after (the collision)	B1	[1]
	(ii)	$p (= mv = 1.67 \times 10^{-27} \times 500) = 8.4 (8.35) \times 10^{-25} \text{Ns}$	A1	[1]
((iii)	1. $mv_A \cos 60^\circ + mv_B \cos 30^\circ$ or $m(v_A^2 + v_B^2)^{1/2}$	B1	
		2. $mv_A \sin 60^\circ + mv_B \sin 30^\circ$	B1	[2]
((iv)	8.35×10^{-25} or $500m = mv_A \cos 60^\circ + mv_B \cos 30^\circ$ and		
		$0 = mv_A \sin 60^\circ + mv_B \sin 30^\circ$ or using a vector triangle	C1	
		$v_{\rm A} = 250 \mathrm{ms^{-1}}$	A1	
		$v_{\rm B} = 430 (433) \rm m s^{-1}$	A1	[3]
42. 9702	2_s1	5_qp_21 Q: 3		
(a)	4.5	$\times 50 - 2.8 \times M (=)$	C1	
		$() = -1.8 \times 50 + 1.4 \times M$	C1	
	(M	=) 75 g	A1	[3]
(b)	<u>tota</u>	Il initial kinetic energy/KE not equal to the total final kinetic energy/KE		
	or <u>r</u>	elative speed of approach is not equal to relative speed of separation		
	SO I	not elastic or is inelastic	B1	[1]
(c)	ford	ce on X is equal and opposite to force on Y (Newton III)	M1	
	ford	ce equals/is proportional to rate of change of momentum (Newton II)	M1	

time of collision same for both balls hence change in momentum is the same

A1 [3]

$43.\ 9702_s18_qp_21\ \ Q{:}\ 3$

	Answer	Mark
(a)	mass is the property (of a body/object) resisting changes in motion or mass is the quantity of matter (in a body)	B1
(b)(i)	force on A (by B) equal and opposite to force on B (by A) or both A and B exert equal and opposite forces on each other	B1
	force is rate of change of momentum <u>and</u> time (of contact) is same	B1
(b)(ii)	$p = mv$ or $3M \times 0.40$ or $M \times 0.25$ or $3M \times 0.2$ or Mv	C1
	$(3M \times 0.40) - (M \times 0.25) = (3M \times 0.2) + Mv$	C1
	$v = (3 \times 0.40) - 0.25 - (3 \times 0.2)$ = 0.35ms^{-1}	A1
(b)(iii)	1. relative speed of approach = 0.40 + 0.25	A1
	= 0.65ms ⁻¹	
	2. relative speed of separation = 0.35 – 0.20	A1
	= 0.15 m s ⁻¹	
(b)(iv)	(relative) speed of separation not equal to/less than (relative) speed of approach or answers (to (b)(iii) are) not equal and so inelastic collision	B1

44. 9702_m17_qp_22 Q: 1

	Answer	Mark
(a)	scalars: kinetic energy, power, work	A1
	vectors: acceleration, force, momentum	A1
(b)(i)	mass = volume × density or $m = V \times \rho$ = $4/3 \pi (23 \times 10^{-2})^3 \times 82$	C1
	weight = $4/3 \pi (23 \times 10^{-2})^3 \times 82 \times 9.8 = 41 \text{ N}$	A1
(b)(ii)	vertical component of tension = 290 sin75° or 290 cos15° (= 280)	C1
	upthrust = 290 sin75° + 41 = 320 (321)N	A1
(b)(iii)	the water pressure is greater than the air pressure or the pressure on lower surface (of sphere) is greater than the pressure on upper surface (of sphere)	B1

5. 9702	2_{-} s1	6_qp_21 Q: 3		
(a)	(i)	force (= mg = 0.15 × 9.81) = 1.5 (1.47) N	A1	[1]
	(ii)	resultant force (on ball) is zero so normal contact force = weight or the forces are in opposite directions so normal contact force = weight		
		or normal contact force up = weight down	A1	[1]
(b)	(i)	(resultant) force proportional/equal to rate of change of momentum	B1	[1]
	(ii)	change in momentum = $0.15 \times (6.2 + 2.5)$ (= 1.305 Ns)	C1	
		magnitude of force = 1.305/0.12 = 11 (10.9) N	A1	
		or	>,	
		(average) acceleration = $(6.2 + 2.5) / 0.12 = (72.5 \text{ m s}^{-2})$	(C1)	
		magnitude of force = 0.15×72.5 = 11 (10.9)N	(A1)	
		(direction of force is) upwards/up	B1	[3]
((iii)	there is a change/gain in momentum of the floor	M1	
		this is equal (and opposite) to the change/loss in momentum of the ball so momentum is conserved	A1	[2]
		or		
		change of (total) momentum of <u>ball and floor</u> is zero so momentum is conserved	(M1) (A1)	
		or		
		(total) momentum of <u>ball and floor</u> before is equal to the (total) momentum of ball and floor after	(M1)	

of <u>ball and floor</u> after so momentum is conserved

(M1)(A1)

$46.\ 9702_w19_qp_22\ Q\!:\ 4$

	Answer	Mark
(a)(i)	(vertically) upwards/up	B1
(a)(ii)	increases (with time/velocity/depth)	B1
(b)(i)	for a body in (rotational) equilibrium	B1
	sum/total of clockwise moments about a point = sum/total of anticlockwise moments about the (same) point	B1
(b)(ii)	$(F_B \times 5.0)$ or (380×2.5) or (750×1.6)	C1
	$(F_B \times 5.0) = (380 \times 2.5) + (750 \times 1.6)$	A1
	F _B = 430 N	
(b)(iii)	taking moments about C:	C1
	$(380 \times 2.5) = 750 \times (2.0 - x)$	
	(2.0 - x) = 1.3	A1
	x = 0.7 m	
	or	
	moments may be taken about other points, e.g. about D:	(C1)
	$(380 \times 4.5) + (750 \times x) = 1130 \times 2.0$	
	x = 0.7 m	(A1)

$47.\ 9702_w19_qp_23\ Q:\ 1$

	Answer	Mark
(a)	base units: kg m s ⁻² × m	A1
	= kg m ² s ⁻²	
(b)(i)	distance of COG from P (= GP) = 17 cos 45° – 4.0 or (144.5)½ – 4.0 (= 8.0 cm)	C1
	moment = $0.15 \times 8.0 \times 10^{-2}$ = 1.2×10^{-2} N m	A1
(b)(ii)	(line of action of) weight acts through pivot/P or distance between (line of action of) weight and pivot/P is zero	B1
	(so) weight does not have a moment about pivot/P	B1

48. 9702_w17_qp_22 Q: 2

	Answer	Mark
(a)	force × perpendicular distance (of line of action of force) to/from a point	B1
(b)(i)	2.4r or $(1.2 \times 2r)$ or $(1.2r + 1.2r)$	A1
(b)(ii)	(anticlockwise moment =) $6.0 \times r/2 \times \sin\theta$	C1
	$6.0 \times r/2 \times \sin\theta = 2.4r$	A1
	θ = 53°	
(b)(iii)	6.0 N	A1

 $49.\ 9702_s20_qp_23\ Q:\ 2$

	Answer	Mark
(a)	a body continues at (rest or) constant velocity unless acted upon by a resultant force	B1
(b)(i)	distance = $[\frac{1}{2} \times (2.0 + 4.4) \times 3.0] + [4.4 \times 2.0]$	C1
	= 9.6 + 8.8	A1
	= 18 m	
(b)(ii)	$a = (v - u)/t$ or gradient or $\Delta v/(\Delta)t$	C1
	e.g. $a = (4.4 - 2.0) / 3.0 = 0.80 \text{ m s}^{-2}$	A1
(b)(iii)	1. force = 240 cos 28° or 240 sin 62°	A1
	= 210 N	
	2. resultant force = 89 × 0.80 (= 71.2 N)	C1
	R = 210 – 71	A1
	= 140 N	
(b)(iv)	$T\sin 45^\circ = mg$	C1
	$T = (89 \times 9.81) / \sin 45^{\circ}$	A1
	= 1200 N	

 $50.\ 9702_w20_qp_22\ Q\hbox{:}\ 4$

	Answer	Mark
(a)	(component =) 96 sin 38° = 59 (N) or 96 cos 52° = 59 (N)	A1
(b)	(45 × 2.9) or (<i>T</i> × 1.8) or (59 × 1.5)	C1
	$(45 \times 2.9) = (T \times 1.8) + (59 \times 1.5)$	C1
	T = 23 N	A1

51. 9702_w20_qp_23 Q: 2

	Answer	Mark
(a)	point where (all) the weight (of the body)	M1
	is considered/seems to act	A1
(b)(i)	horizontal component of force = 38 cos 60° or 38 sin 30°	A1
••	= 19 N	
(b)(ii)	$(T \times 1.2)$ or (19×0.9) or 17	C1
	$(T \times 1.2) = (19 \times 0.9)$	A1
	T = 14 N	
(b)(iii)	$F = 45 + 38 \sin 60^{\circ}$	A1
	= 78 N	

[1]

52.9702 w18 qp 22 Q: 2

	Answer	Mark
(a)	ampere kelvin (allow mole, candela)	B2
	any two correct answers, 1 mark each	
(b)(i)	frictional (force)/friction	B1
(b)(ii)	Wcos31° × 3.0 or 90 × 6.0	C1
	$W\cos 31^{\circ} \times 3.0 = 90 \times 6.0$	A1
	W = 210 N	
(b)(iii)	X = 90 sin 31°	A1
	= 46 N	

 $53.\ 9702_s15_qp_22\ Q\hbox{:}\ 3$

- (a) (i) (vertical component = 44 sin 30° =) 22N
 - (ii) (horizontal component = 44 cos 30° =) 38(.1) N A1 [1]
- **(b)** $W \times 0.64 = 22 \times 1.60$

(W =) 55 N A1 [2]

- (c) F has a horizontal component (not balanced by W) or F has 38 N acting horizontally or 38 N acts on wall or vertical component of F does not balance W or F and W do not make a closed triangle of forces.
- or F and W do not make a closed triangle of forces B1 [1]
- (d) line from P in direction towards point on wire vertically above W and direction up B1 [1]

54. 9702 w15 qp 22 Q: 4

- (a) product of the force and the perpendicular distance to/from a point/pivot B1 [1]
- (b) (i) $4000 \times 2.8 \times \sin 30^{\circ}$ or $500 \times 1.4 \times \sin 30^{\circ}$ or $T \times 2.8$ or 4000×1.4 or 500×0.7

 $4000 \times 2.8 \times \sin 30^{\circ} + 500 \times 1.4 \times \sin 30^{\circ} = T \times 2.8$ M1 hence T = 2100 (2125) N A0 [2]

- (ii) $(T_v = 2100 \cos 60^\circ =) 1100 (1050) N$ A1 [1]
- (iii) there is an upward (vertical component of) force at A B1

upward force at A + T_v = sum of downward forces/weight+load/4500 N B1 [2]

$55.\ 9702_w20_qp_21\ Q:\ 1$

	Answer	Mark
(a)(i)	force × perpendicular distance (of line of action of force to the point)	B1
(a)(ii)	units: kg m s ⁻² m = kg m ² s ⁻²	A1
(b)	$W = \rho Vg$ or $W = \rho ALg$	C1
	$A = 5.2/(790 \times 2.4 \times 9.81)$	C1
	$(=2.8\times10^{-4} \text{ (m}^2))$	
	$= 2.8 \times 10^2 \text{ mm}^2$	A1
(c)(i)	(component =) 5.2 sin 56° = 4.3 (N) or 5.2 cos 34° = 4.3 (N)	A1
(c)(ii)	(7×2.4) or (4.3×1.2) or (4.6×1.8)	C1
	$(T \times 2.4) + (4.3 \times 1.2) = (4.6 \times 1.8)$	C1
	T = 1.3 N	A1

$56.\ 9702_w20_qp_22\ Q\hbox{:}\ 2$

	Answer	Mark
(a)(i)	$(\Delta)p = \rho g(\Delta)h$	C1
	$520 = 1000 \times 9.81 \times h$	
	h = 0.053 m	A1
(a)(ii)	(upthrust =) $(\Delta)p \times A$	C1
	= $(\Delta)p \times \pi (d/2)^2$ or $(\Delta)p \times \pi r^2$	
	= $520 \times \pi (0.031/2)^2 = 0.39 (N)$	A1
(a)(iii)	T = 0.84 - 0.39	A1
	= 0.45 N	

	Answer	Mark
(b)(i)	$a = (v - u)/t$ or $(\Delta)v/(\Delta)t$ or gradient	C1
	$= e.g. 8.0 \times 10^{-2} / 2.0$ $= 4.0 \times 10^{-2} \text{ m s}^{-2}$	A1
(b)(ii)	distance = $(\frac{1}{2} \times 2.5 \times 0.10) + (\frac{1}{2} \times 1.5 \times 0.10)$ or $(\frac{1}{2} \times 4.0 \times 0.10)$ (= 0.20 (m))	C1
	depth = 0.32 - 0.20 = 0.12 m	A1
(c)(i)	viscous (force)	B1
(c)(ii)	viscous force increases (with speed/time/depth)	B1
	(so) acceleration decreases	B1

$57.\ 9702_w18_qp_22\ Q\hbox{:}\ 3$

	Answer	Mark
(a)	sum/total momentum (of a system of bodies) is constant or sum/total momentum before = sum/total momentum after	M1
	for an isolated system or no (resultant) external force	A1
(b)(i)	$m = \rho V$	C1
	= $1.3 \times \pi \times 0.045^2 \times 1.8 \times 2.0 = 0.030 \text{ (kg)}$	A1
(b)(ii)	1. $(\Delta)p = (\Delta)mv$	C1
	= 0.030 × 1.8	A1
	= 0.054 Ns	
	2. $F = 0.054/2.0 \text{ or } 0.030 \times 1.8/2.0$	A1
	= 0.027 N	
(b)(iii)	force on air (by propeller) equal to force on propeller (by air)	M1
	and opposite (in direction)	A1
(b)(iv)	resultant force = 0.20 × 0.075 (= 0.015 N)	C1
	frictional force = 0.027 – 0.015	
	= 0.012N	A1

$58.\ 9702_w18_qp_23\ Q:\ 3$

	Answer	Mark
(a)	(resultant) force proportional/equal to rate of change of momentum	B1
(b)(i)	$\rho = m/V$	C1
	$V = \pi \times (7.5 \times 10^{-3})^2 \times 13 \times 0.2 \ (= 4.59 \times 10^{-4} \text{m}^3)$ $m = \pi \times (7.5 \times 10^{-3})^2 \times 13 \times 0.2 \times 1000 = 0.46 \text{kg}$	A1
(b)(ii)	1. $(\Delta)p = (\Delta m)v$	C1
	$(\Delta)p = 0.46 \times 13$	A1
	= 6.0 Ns	
	2. F = 6.0/0.20	A1
	= 30 N	
(b)(iii)	force on water (by rocket/nozzle) equal to force on rocket/nozzle (by water)	M1
	in the opposite direction	A1
(b)(iv)	1. mass = 0.40 + 0.70 - 0.46 = 0.64 kg	A1
	2. acceleration = [30 - (0.64 × 9.81)]/0.64 or 30/0.64 - 9.81	C1
	= 37 ms ⁻²	A1

 $59.\ 9702_s17_qp_21\ Q\hbox{:}\ 3$

	Answer	Mark
(a)	$\rho = m/V$	C1
	$V = \pi d^2 L / 4 \text{ or } \pi r^2 L$	C1
	weight = $2.7 \times 10^3 \times \pi \ (1.2 \times 10^{-2})^2 \times 5.0 \times 10^{-2} \times 9.81 = 0.60 \ N$	A1
(b)(i)	the point from where (all) the weight (of a body) seems to act	B1
(b)(ii)	W×12	C1
	$(0.25 \times 8) + (0.6 \times 38)$	C1
	W = (2 + 22.8)/12	A1
	= 2.1 (2.07)N	
(c)(i)	pressure changes with depth (in water)	B1
	or pressure on bottom (of cylinder) different from pressure on top	
	pressure on bottom of cylinder greater than pressure on top	B1
	or force (up) on bottom of cylinder greater than force (down) on top	
(c)(ii)	anticlockwise moment reduced and reducing the weight of X reduces clockwise moment	B1
	or anticlockwise moment reduced so clockwise moment now greater than (total) anticlockwise moment	

60. 9702_s16_qp_22 Q: 2

(a)
$$p = F/A$$

M1

use of $m = \rho V$ and use of V = Ah and use of F = mg

М1

correct substitution to obtain $p = \rho gh$

A1 [3]

(b) (i) (when *h* is zero the pressure is not zero due to) <u>pressure</u> from the air/atmosphere

B1 [1]

(ii) gradient = ρg or $P - 1.0 \times 10^5 = \rho gh$

C1

e.g.
$$\rho g = 1.0 \times 10^5 / 0.75 (= 133333)$$

$$\rho = 133333/9.81$$

$$= 14\,000 (13\,592) \text{ kg m}^{-3}$$

A1 [2]

61. $9702_s16_qp_23$ Q: 4

(a) (resultant force = 0) (equilibrium)

therefore: weight – upthrust = force from thin wire (allow tension in wire)

$$5.3 (N) - upthrust = 4.8 (N)$$

В1 [1]

(b) difference in weight = upthrust or upthrust = 0.5 (N)

$$0.5 = \rho ghA$$
 or $m = 0.5/9.81$ and $V = 5.0 \times 13 \times 10^{-6} \, (\text{m}^3)$

$$\rho = 0.5/(9.81 \times 5.0 \times 13 \times 10^{-6})$$

$$= 780 (784) \text{ kg m}^{-3}$$
 A1 [3]

62. 9702_w16_qp_21 Q: 1

(a) (density =) mass/volume

[1]

(b) (i)
$$d = [(6 \times 7.5)/(\pi \times 8100)]^{1/3}$$

$$= 0.12(1) \text{ m}$$

Α1 [1]

(ii) percentage uncertainty =
$$(4 + 5)/3$$
 (= 3%)

fractional uncertainty = (0.04 + 0.05)/3

$$(=0.03)$$

C1

absolute uncertainty (=
$$0.03 \times 0.121$$
) = 0.0036

C1

$$d = 0.121 \pm 0.004 \,\mathrm{m}$$

Α1 [3]

63. 9702 w16 qp 22 Q: 1

[1] В1

(ii)
$$(p = F/A \text{ so}) \text{ units: } \text{kg m s}^{-2}/\text{m}^2 = \text{kg m}^{-1} \text{s}^{-2}$$

Α1 [1]

allow use of other correct equations:

e.g.
$$(\Delta p = \rho g \Delta h \text{ so}) \text{ kg m}^{-3} \text{ ms}^{-2} \text{ m} = \text{kg m}^{-1} \text{ s}^{-2}$$

e.g. $(p = W/\Delta V \text{ so}) \text{ kg ms}^{-2} \text{ m/m}^3 = \text{kg m}^{-1} \text{ s}^{-2}$

(b) units for m: kg, t: s and ρ : kg m⁻³

C1

units of C: $kg/s (kg m^{-3} kg m^{-1} s^{-2})^{1/2}$

or units of
$$C^2$$
: $kg^2/s^2 kg m^{-3} kg m^{-1} s^{-2}$

C1

units of C: m²

[3] Α1

64. 9702 w16 qp 23 Q: 1

(b) (i)
$$d = [(6 \times 7.5)/(\pi \times 8100)]^{1/3}$$

= 0.12(1) m A1 [1]

(ii) percentage uncertainty =
$$(4 + 5)/3$$
 (= 3%) or fractional uncertainty = $(0.04 + 0.05)/3$ (= 0.03) C1 absolute uncertainty (= 0.03×0.121) = 0.0036 C1

$$d = 0.121 \pm 0.004 \,\mathrm{m}$$
 A1 [3]

65. 9702_s15_qp_22 Q: 4

(a)
$$(p =) mv$$
 C1
 $\Delta p = -6.64 \times 10^{-27} \times 1250 - 6.64 \times 10^{-27} \times 1250 = 1.66 \times 10^{-23} \text{ Ns}$ A1 [2]

(b) (i) molecule collides with wall/container and there is a change in momentum B1

change in momentum / time is force or
$$\Delta p = Ft$$

B1

many/all/sum of molecular collisions over surface/area of container produces pressure

B1

[3]

66. 9702 w15 qp 21 Q: 4

(b) pressure = force/area

(a) density = mass/volume C1
mass =
$$7900 \times 4.5 \times 24 \times 10^{-6} = 0.85 (0.853) \text{kg}$$
 M1 [2]

$$force = W\cos 40^{\circ}$$

pressure =
$$(0.85 \times 9.81 \cos 40^{\circ})/24 \times 10^{-4}$$

= $2.7 (2.66) \times 10^{3} Pa$ A1 [3]

(c)
$$F = ma$$

$$W \sin 40^{\circ} - f = ma$$

$$0.85 \times 9.81 \times \sin 40^{\circ} - f = 0.85 \times 3.8$$

$$f = 5.36 - 3.23 = 2.1 \text{ N}$$
 [5.38 – 3.242 if 0.8532 kg is used for the mass] A1 [3]

C1

 $67.\ 9702_w15_qp_23\ Q\hbox{:}\ 7$

(a) stress or
$$\sigma = F/A$$
 C1

max. tension = UTS × $A = 4.5 \times 10^8 \times 15 \times 10^{-6} = 6800 (6750) N$ A1 [2]

(b) $\rho = m/V$ C1

weight = $mg = \rho Vg = \rho ALg$
 $6750 = 7.8 \times 10^3 \times 15 \times 10^{-6} \times L \times 9.81$ C1

 $L = 5.9 (5.88) \times 10^3 m$ A1

or

maximum mass = $6750/9.81 = 688 \text{ kg}$ (C1)
 $L = 688/0.117 = 5.9 \times 10^3 m$ (C1)

or

maximum mass = $6750/9.81 = 688 \text{ kg}$ (C1)
 $L = 688/0.117 = 5.9 \times 10^3 m$ (C1)

or

maximum mass = $6750/9.81 = 688 \text{ kg}$ (C1)
 $L = 0.0882/15 \times 10^{-6} = 5.9 \times 10^3 m$ (C1)

 $L = 0.0882/15 \times 10^{-6} = 5.9 \times 10^3 m$ (C1)

(C1)

(C1)

(C1)

(C2)

68. $9702_s20_qp_21$ Q: 2

	Answer	Mark
(a)	(resultant) force proportional to rate of change of momentum	B1
(b)(i)	arrow drawn vertically downwards from point X	B1
(b)(ii)	$s = ut + \frac{1}{2}at^{2}$ $h = \frac{1}{2} \times 9.81 \times 0.81^{2}$	C1
	= 3.2 m	A1
(b)(iii)	$d = 5.4 \times 0.81$ = 4.4 m	A1
(c)(i)	downward pointing arrow labelled weight	B1
	upward pointing arrow labelled air resistance	B1
(c)(ii)	air resistance increases	B1
	weight constant or <u>resultant</u> force decreases	B1
	(so) acceleration decreases	B1
(c)(iii)	gravitational potential energy to thermal/internal energy	B1

$69.\ 9702_s17_qp_22\ Q\hbox{:}\ 4$

	Answer	Mark
(a)	a body/mass/object continues (at rest or) at constant/uniform velocity unless acted on by a resultant force	B ²
(b)(i)	initial momentum = final momentum	C,
	$m_1u_1 + m_2u_2 = m_1v_1 + m_2v_2$	
	$0.60 \times 100 - 0.80 \times 200 = -0.40 \times 100 + v \times 200$	A
	$v = (-) 0.3(0) \mathrm{m s^{-1}}$	
(b)(ii)	kinetic energy is not conserved/is lost (but) total energy is conserved/constant	В
	or some of the (initial) <u>kinetic</u> energy is transformed into other forms of energy	

70. 9702_w17_qp_23 Q: 2

	Answer	Mark
(a)	$\rho = m/V \text{ or } \rho = m/Ah$	B1
	p = F/A or p = W/A	B1
	$p = [\rho A h g] / A \text{ or } p = [\rho V g] / [V / h] \text{ (so) } p = \rho g h$	A 1

	Answer	Mark
(b)(i)	weight/gravitational (force) upthrust (force)/buoyancy (force) drag/viscous/frictional (force)/fluid resistance/resistance	B1
	2. weight = upthrust + viscous (force)	B1
(b)(ii)	 decrease in (gravitational) potential energy (of sphere) due to decrease in height (since E_p = mgh) increase in thermal energy due to work done against viscous force/drag loss/change of (total) E_p equal to gain/change in thermal energy Any 2 points. 	B2
(c)(i)	atmospheric pressure = 9.1(0) × 10 ⁴ Pa	A1
(c)(ii)	$(\Delta)p = \rho g(\Delta)h$ $(9.15 - 9.10) \times 10^4 = \rho \times 9.81 \times (0.17 - 0.10)$	C1
	ρ = 730 (728) kg m ⁻³	A1

71. 9702_s15_qp_22 Q: 2

(a) speed decreases/stone decelerates to rest/zero at 1.25s	B1	
speed then increases/stone accelerates (in opposite direction)	B1	[2]
(b) (i) $v = u + at$ (or $s = ut + \frac{1}{2}at^2$ and $v^2 = u^2 + 2as$)	C1	
$= 0 + (3.00 - 1.25) \times 9.81$	C1	
$= 17.2 (17.17) \mathrm{m s^{-1}}$	A1	[3]
(ii) $s = ut + \frac{1}{2}at^2$		
$s = \frac{1}{2} \times 9.81 \times (1.25)^2 [= 7.66]$ $s = \frac{1}{2} \times 9.81 \times (1.75)^2 [= 15.02]$	C1 C1	
(distance = 7.66 + 15.02)	.0	
$[v = u + at = 0 + 9.81 \times (2.50 - 1.25) = 12.26 \mathrm{ms^{-1}}]$	0	
or $s = \frac{1}{2} \times 9.81 \times (1.25)^2 [= 7.66]$ $s = 12.26 \times 0.50 + \frac{1}{2} \times 9.81 \times (3.00 - 2.50)^2 [= 7.36]$	(C1) (C1)	
(distance = 2 × 7.66 + 7.36)		
Example alternative method: $s = (v^2 - u^2)/2a = (12.26^2 - 0)/2 \times 9.81 [= 7.66]$ $s = (v^2 - u^2)/2a = (17.17^2 - 12.26^2)/2 \times 9.81 [= 7.36]$	(C1) (C1)	
(distance = 2 × 7.66 + 7.36)		
22.7 (22.69 or 23) m	A1	[3]
(iii) (s = 15.02 – 7.66 =) 7.4 (7.36) m (ignore sign in answer)	A1	
down	A1	[2]
(c) straight line from positive value of v to t axis	M1	
same straight line <u>crosses</u> t axis at $t = 1.25$ s	A1	
same straight line continues with same gradient to $t = 3.0 \mathrm{s}$	A1	[3]

72. $9702 w15 qp_23 Q: 4$

(a) (i) reaction/vertical force = weight $-P \cos 60^{\circ}$ C1 = $180 - 35 \cos 60^{\circ}$ A1 [2] (ii) work done = $35 \sin 60^{\circ} \times 20$ C1 = 610 (606) J A1 [2]

(b) (i) work done by force P = work done against frictional force B1 [1]

(ii) horizontal component of *P* is equal and opposite to frictional force B1

vertical component of *P* + normal reaction force equal and opposite to weight B1 [2]

73. 9702_s20_qp_21 Q: 3

	Answer	Mark
(a)	resultant force (in any direction) is zero	B1
	resultant torque/moment (about any point) is zero	B1
(b)(i)	1. $T \sin 53^\circ = 2.4$	A1
	T = 3.0 N	
	2. $F = T\cos 53^{\circ} \text{ or } F^2 = T^2 - 2.4^2$	A1
	F = 1.8 N	
(b)(ii)	σ = T/A or σ = F/A	C1
	$A = \pi \sigma^2 / 4$ or $A = \pi r^2$	C1
	$\sigma = 3.0 \times 4 / [\pi \times (0.50 \times 10^{-3})^{2}]$ $= 1.5 \times 10^{7} \text{ Pa}$	A1
(c)(i)	$h = 75 - 75 \sin 53^\circ = 15 \text{ cm}$	A1
(c)(ii)	$(\Delta)E = mg(\Delta)h$ or $(\Delta)E = W(\Delta)h$	C1
•	$(\Delta)E = 2.4 \times 15 \times 10^{-2}$ = 0.36 J	A1
(c)(iii)	$E = \frac{1}{2}mv^2$	B1
	$0.36 = \frac{1}{2} \times (2.4 / 9.81) \times v^2$	C1
	$v = 1.7 \text{ m s}^{-1}$	A1

$74.\ 9702_s20_qp_22\ Q\hbox{:}\ 3$

	Answer	Mark
(a)	(work done =) force × displacement in direction of the force	B1
(b)(i)	1. $(\Delta)E = mg(\Delta)h$	C1
	= 0.42 × 9.81 × 78	A1
	= 320 J	
	2. $E = \frac{1}{2}mv^2$	C1
	$(\Delta)E = \frac{1}{2} \times 0.42 \times 23^2$	A1
	= 110 J	
(b)(ii)	work done = 320 – 110 (= 210 N)	C1
	average resistive force = 210 / 78	A1
	= 2.7 N	
(c)	downward sloping line from $(0, g)$ to a non-zero value on the time axis	M1
	line is curved with a gradient that becomes less negative and the line meets t -axis at time $t < T$	A1

75. $9702_{2} - 20_{2} = 21$ Q: 2

	Answer	Mark
(a)	constant gradient	B1
(b)	(displacement until 0.20 s =) $\frac{1}{2} \times 1.96 \times 0.20$ (= 0.196 m) or (displacement after 0.20 s =) $\frac{1}{2} \times 6.86 \times 0.70$ (= 2.401 m)	C1
	height = 2.401 – 0.196	C1
	= 2.2 m	A1
	(alternative methods are possible using equations of uniformly accelerated motion)	
(c)	$(\Delta)E = mg(\Delta)h$ or $W(\Delta)h$	C1
	$(\Delta)E = 0.86 \times 2.2$ = 1.9 J	A1
(d)	curved line from the origin	M1
	gradient of curved line decreases and is zero at <i>t</i> = 0.20 s only	A1
(e)	acceleration (of free fall) is unchanged/is not dependent on mass and (so) no effect	B1

76. 9702_m19_qp_22 Q: 2

	Answer	Mark
(a)(i)	distance in a specified direction (from a point)	B1
(a)(ii)	change in velocity / time (taken)	B1
(b)(i)	constant velocity so no resultant force	B1
	no resultant force so in equilibrium	B1
(b)(ii)	(difference in height =) 47 × 2.8 × 60 × sin24° = 3200 m	A1

	Answer	Mark
(b)(iii)	1 $(\Delta)E = mg(\Delta)h$ = $85 \times 9.81 \times 3200$	C1
	= 2.7 × 10 ⁶ J	A1
	2 <u>In terms of energy:</u> work done = 2.7 × 10 ⁶ J force = 2.7 × 10 ⁶ / (47 × 2.8 × 60)	C1
	= 340 N	A1
	In terms of forces: component of weight along path = force due to air resistance force = $85 \times 9.81 \times \sin 24^{\circ}$	(C1)
	= 340 N	(A1)
(b)(iv)	$(\Delta)p = \rho g(\Delta)h$ $(92 - 63) \times 10^3 = \rho \times 9.81 \times 3200$	C1
	ρ = 0.92 kg m ⁻³	A1

77. $9702 m19 qp_22 Q: 3$

	Answer			•		Y	Mark
(a)	$(m \times 3.0)$ or $(2.5 \times 9.6 \times \cos 60^{\circ})$			A			C1
	$(m \times 3.0) - (2.5 \times 9.6 \times \cos 60^{\circ}) = 0 \text{ so } m = 4.0 \text{ (kg)}$	X	↗		1		A1

	Answer	Mark
(b)	$2.5 \times 9.6 \times \sin 60^{\circ} = (4.0 + 2.5) \times V$	C1
	V = 3.2 m s ⁻¹	A1
	or use of momentum vector triangle: $(4.0 \times 3.0)^2 + [(4.0 + 2.5) \times V]^2 = (2.5 \times 9.6)^2$	(C1)
	V = 3.2 m s ⁻¹	(A1)
(c)	$E = \frac{1}{2}mv^2$	C1
	difference in $E_K = \frac{1}{2} \times 2.5 \times (9.6)^2 - \frac{1}{2} \times 4.0 \times (3.0)^2$	
	= 97 J	A1

$78.\ 9702_s19_qp_22\ Q{:}\ 3$

	Answer	Mark
(a)	the point where (all) the weight (of the body) is taken to act	B1
(b)(i)	vertical component = 54 sin 35°	A1
	= 31 N	
(b)(ii)	the (line of action of the) force (at B) passes through (point) A	B1
	or	
	the (line of action of the) force (at B) has zero (perpendicular) distance from (point) A	
(b)(iii)	54 sin 35° × 0.68 or 54 cos 35° × 0.68 or W × 0.34	C1
	$54 \sin 35^{\circ} \times 0.68 + 54 \cos 35^{\circ} \times 0.68 = W \times 0.34 \text{ so } W = 150 \text{ (N)}$	A1
(b)(iv)	total vertical force = 150 – 31	A1
	= 120 N	
(c)	$(\Delta)E = mg(\Delta)h$	C1
	$E = \frac{1}{2}mv^2$	C1
	ratio = $(m \times 9.81 \times 4.8) / (\frac{1}{2} \times m \times 9.2^2)$ or $(9.81 \times 4.8) / (\frac{1}{2} \times 9.2^2)$	C1
	=1.1	A1

$79.\ 9702_s19_qp_23\ Q:\ 2$

	Answer	Mark
(a)(i)	1. W = mas	B1
	2. $s = (v^2 - u^2)/2a$	B1
(a)(ii)	W/work equals energy transferred/gain or change in kinetic energy	B1
	$W (= mas) = ma(v^2 - u^2)/2a$	B1
	leading to $W = m(v^2 - u^2)/2$ (so KE = ½ mv^2)	
(b)(i)	solid curved line drawn from X to Y along path of ball and labelled D	B1
	2. solid straight line drawn from X to Y and labelled S	B1
(b)(ii)	$(\Delta)E = mg(\Delta)h$	C1
	$4.5 = (0.040 \times 9.81 \times h) + (1/2 \times 0.040 \times 9.5^{2})$	C1
	h = 6.9 m	A1
(b)(iii)	line with a negative gradient starting from a non-zero value of kinetic energy when the vertical height is zero	M1
	straight line ends at a non-zero value of kinetic energy when the vertical height is h	A1

80. $9702_{qp_21} Q: 4$

	Answer	Mark
(a)	k = F/x or $k = gradient$	C1
	e.g. k = 4.0 / 0.050	A1
	k = 80 N m ⁻¹	
(b)	$E = \frac{1}{2}Fx$ or $E = \frac{1}{2}kx^2$ or $E = \text{area under graph}$	C1
	(Δ) $E = (\frac{1}{2} \times 3.2 \times 0.040) - (\frac{1}{2} \times 1.2 \times 0.015) = 0.055 \text{ J}$ or (Δ) $E = (\frac{1}{2} \times 80 \times 0.040^2) - (\frac{1}{2} \times 80 \times 0.015^2) = 0.055 \text{ J}$ or (Δ) $E = \frac{1}{2} \times (1.2 + 3.2) \times 0.025 = 0.055 \text{ J}$	A1
(c)	$(\Delta)E = mg(\Delta)h$	C1
	= 0.122 × 9.81 × (0.120 – 0.095)	A1
	= 0.030 J	
	or	
	$(\Delta)E = W \times (\Delta)h$	(C1)
	= 1.2 × 0.025	(A1)
	= 0.030 J	

		Answer	Mark
(d)(i)	E = 0.055 - 0.030		A1
	= 0.025 J		
(d)(ii)	$E = \frac{1}{2}mv^2$		C1
	$v = [(2 \times 0.025) / 0.122]^{0.5}$	6.0	A1
	= 0.64 m s ⁻¹		

81. 9702_w19_qp_22 Q: 3

	Answer	Mark
(a)	force on body A (by body B) is equal (in magnitude) to force on body B (by body A)	B1
	force on body A (by body B) is opposite (in direction) to force on body B (by body A)	B1
(b)(i)	$m_X \times 5v$ or $(m_X + m_Y) \times v$	C1
	$m_X \times 5v = (m_X + m_Y) \times v$ (so) $m_Y / m_X = 4$	A1
(b)(ii)	$(E=) \frac{1}{2}mv^2$	C1
	ratio = $[\frac{1}{2} \times (m_X + m_Y) \times v^2] / [\frac{1}{2} \times m_X \times (5v)^2]$	C1
	=0.2	A1
(b)(iii)	ratio = 1	A1
(c)(i)	1. (magnitude of resultant force is) zero	B1
	2. (magnitude of resultant force is) constant	B1
	(direction of resultant force is) opposite to the momentum	B1
(c)(ii)	horizontal line from (0 ms, 0 squares) ending at (20 ms, 0 squares)	B1
	straight line from (20 ms, 0 squares) ending at (40 ms, 4.0 squares [= 4.0 cm vertically])	B1
	horizontal line from (40 ms, 4.0 squares) ending at (60 ms, 4.0 squares)	B1

$82.\ 9702_m18_qp_22\ Q:\ 2$

	Answer	Mark
(a)(i)	force × distance moved in the direction of the force	B1
(a)(ii)	energy (of a mass/body) due to motion / speed / velocity	B1
(b)(i)	$1 E = \frac{1}{2}mv^2$	C1
	$(\Delta)E = \frac{1}{2} \times 580 \times (22^2 - 12^2) = 9.9 \times 10^4 \text{ J}$	A1
	2 $(\Delta)E = mg(\Delta)h$ $\Delta E = 580 \times 9.81 \times 13$	C1
	= 7.4 × 10 ⁴ J	A1

	Answe	r	Mark
(b)(ii)	length = $(2\pi \times 13)/4$ or $(\pi \times 26)/4$ or $(\pi \times 13)/2 = 20$ m		A1
(b)(iii)	work done against resistive force = $9.9 \times 10^4 - 7.4 \times 10^4$ average resistive force = $(9.9 \times 10^4 - 7.4 \times 10^4)/20$	0.	C1
	= 1300 N	40	A1
(b)(iv)	from horizontal/right to vertical / up or 90°	10)	A1
(b)(v)	p = mv or (580 × 22) or (580 × 12)	4.0	C1
	$\Delta p = [(580 \times 12)^2 + (580 \times 22)^2]^{0.5}$	4	C1
	= 1.5 × 10 ⁴ N s		A1

83. $9702_s18_qp_22$ Q: 2

	Answer	Mark
(a)	sum/total momentum (of a system of bodies) is constant	M1
	sum/total momentum before = sum/total momentum after	
	for an isolated system or no (resultant) external force	A1
(b)(i)	$(p =) mv$ or $(3.0M \times 7.0)$ or $(2.0M \times 6.0)$ or $(1.5M \times 8.0)$	C1
	$3.0M \times 7.0 = 2.0M \times 6.0 \sin\theta + 1.5M \times 8.0 \sin\theta$	C1
	<i>θ</i> = 61°	A1
	or (vector triangle method)	
	momentum vector triangle drawn	(C1)
	θ = 61° (2 marks for ±1°, 1 mark for ±2°)	(A2)
	or (use of cosine rule)	
•	$p = mv$ or $(3.0M \times 7.0)$ or $(2.0M \times 6.0)$ or $(1.5M \times 8.0)$	(C1)
	$(21M)^2 = (12M)^2 + (12M)^2 - (2 \times 12M \times 12M \times \cos 2\theta)$	(C1)
	<i>θ</i> = 61°	(A1)
(b)(ii)	$(E =) \frac{1}{2}mv^2$	C1
	ratio = $(\frac{1}{2} \times 2.0M \times 6.0^2) / (\frac{1}{2} \times 1.5M \times 8.0^2)$	A1
	= 0.75	

84. $9702_s18_qp_23~Q: 3$

	Answer	Mark
(a)	v = u + at	A1
	$v = 9.6 - (9.81 \times 0.37) = 6.0 \mathrm{ms^{-1}}$	
(b)	$s = \frac{1}{2} \times (9.6 + 6.0) \times 0.37$ or $6.0^2 = 9.6^2 - (2 \times 9.81 \times s)$ or $s = (9.6 \times 0.37) - (\frac{1}{2} \times 9.81 \times 0.37^2)$	C1
	or $s = (6.0 \times 0.37) + (\frac{1}{2} \times 9.81 \times 0.37^2)$	
	s=2.9m	A1
(c)(i)	$(\Delta)E = mg(\Delta)h$	C1
	$\Delta E = 0.056 \times 9.81 \times 2.9$	A1
	= 1.6J	
(c)(ii)	$E = \frac{1}{2}mv^2$	C1
	$\Delta E = \frac{1}{2} \times 0.056 \times (6.0^2 - 3.8^2)$ = 0.60 J	A1
(d)	force on ball (by ceiling) equal to force on ceiling (by ball)	M1
	and opposite (in direction)	A1
(e)	(p=) mv or 0.056×6.0 or 0.056×3.8	C1
	change in momentum = 0.056 × (6.0 + 3.8)	A 1
	=0.55Ns	

	Answer	Mark
(f)	resultant force = 0.55/0.085 (= 6.47 N)	C1
	force by ceiling = $6.47 - (0.056 \times 9.81)$	A1
	= 5.9N	

85. $9702_w18_qp_21$ Q: 1

	Answer	Mark
(a)(i)	distance in a specified direction (from a point)	B1
(a)(ii)	change in velocity/time (taken)	B1
(b)(i)	vertical component of velocity = $(5.5^2 - 4.6^2)^{1/2} = 3.0 \text{ (ms}^{-1})$ or $5.5 \cos \theta = 4.6 \text{ (so } \theta = 33.2^\circ)$ and $5.5 \sin 33.2^\circ = 3.0 \text{ (ms}^{-1})$	A1
(b)(ii)	$s = ut + \frac{1}{2}at^2$	C1
	$0 = (3.0 \times t) - (\frac{1}{2} \times 9.81 \times t^2)$	
	or	
	v = u + at	
	-3.0 = 3.0 - 9.81t	
	t=0.61s	A1
(b)(iii)	$d = 4.6 \times 0.61$	A1
	= 2.8 m	
(b)(iv)	$E = \frac{1}{2}mv^2$	C1
	ratio = $(\frac{1}{2} \times m \times 4.6^2)/(\frac{1}{2} \times m \times 5.5^2)$ or ratio = $(\frac{1}{2} \times m \times 5.5^2 - m \times 9.81 \times 0.459)/(\frac{1}{2} \times m \times 5.5^2)$	C1
	ratio = 0.70	A1
(c)	straight line from positive value of v_y at $t = 0$ to negative value of v_y	M1
	straight line ends at $t = T$ and final magnitude of v_v greater than initial magnitude of v_v	A1

86. $9702_w18_qp_22$ Q: 1

	Answer	Mark
(a)	$v_X = (6.0^2 - 4.8^2)^{1/2} = 3.6 (\text{m s}^{-1})$	A1
	or $6.0 \sin \theta = 4.8 \text{ (so } \theta = 53.1^{\circ}) \text{ and } v_x = 6.0 \cos 53.1^{\circ} = 3.6 \text{ (m s}^{-1})$	
(b)(i)	straight line from (0, 4.8) to (0.49, 0)	M1
	straight line continues with same slope to (0.98, -4.8) (labelled Y)	A1
(b)(ii)	a horizontal line	M1
	from (0, 3.6) to (0.98, 3.6) (labelled X)	A1
(c)	$s = ut + \frac{1}{2}at^{2}$ $= (4.8 \times 0.49) + (\frac{1}{2} \times -9.81 \times 0.49^{2})$ or $s = \frac{1}{2}(u + v)t \text{ or area under graph}$ $= \frac{1}{2} \times (4.8 + 0) \times 0.49$	C1
	or $s = vt - \frac{1}{2}at^2$ $= \frac{1}{2} \times 9.81 \times 0.49^2$ or $v^2 = u^2 + 2as$ $s = \frac{4.8^2}{(2 \times 9.81)}$	
	s = 1.2 m	A1

	Answer	Mark
(d)	$(\Delta)E = mg(\Delta)h$	C1
	$E = \frac{1}{2}mv^2$	C1
	ratio = $(\frac{1}{2} \times m \times 3.6^2) / (m \times 9.81 \times 1.2)$ or ratio = $[(\frac{1}{2} \times m \times 6.0^2) - (m \times 9.81 \times 1.2)] / (m \times 9.81 \times 1.2)$	C1
	or ratio = $(\frac{1}{2} \times m \times 3.6^2) / (\frac{1}{2} \times m \times 4.8^2)$	
	ratio = 0.56	A1
(e)	(force due to) air resistance acts in opposite direction to the velocity or (with air resistance, average) resultant force is larger (than weight)	B1

87. $9702_{w18}qp_23$ Q: 2

	Answer	Mark
(a)	energy (of a mass/body/object) due to motion/speed/velocity	B1
(b)(i)	$E = \frac{1}{2}mv^2$	C1
	$480 = \frac{1}{2} \times m \times 80^2$ so $m = 0.15$ kg	A1
(b)(ii)	1. $E = mgh \text{ or } \Delta E = mg\Delta h$	C1
	= 0.15 × 9.81 × 210	A1
	= 310J	
	2. work done = 480 – 310	A1
	= 170 J	
(b)(iii)	work done = Fs	C1
	force = 170/210	A1
	= 0.81N	
(b)(iv)	curved line from positive value on <i>v</i> -axis to (<i>T</i> , 0)	M1
	magnitude of gradient decreases	A1
(b)(v)	as shell rises force decreases and as shell falls force increases	B1
	as shell rises force is downward and as shell falls force is upward	B1
	or	
	as shell rises the force decreases and is downward	(B1)
	as shell falls the force increases and is upward	(B1)

$88.\ 9702_s17_qp_21\ Q:\ 2$

	Answer	Mark
(a)	resultant force (in any direction) is zero	B1
	resultant torque/moment (about any point) is zero	B1
(b)(i)	$a = (v - u)/t$ or gradient or $\Delta v/(\Delta)t$	C1
	e.g. $a = (8.8 - 4.6) / (7.0 - 4.0) = 1.4 \text{ m s}^{-2}$	A1
(b)(ii)	$s = 4.6 \times 4 + [(8.8 + 4.6)/2] \times 3$	C1
	= 18.4 + 20.1	A1
	= 39 (38.5) m	
(b)(iii)	$\Delta E = \frac{1}{2} \times 95 \left[(8.8)^2 - (4.6)^2 \right]$	C1
	= 3678 – 1005	A1
	= 2700 (2673) J	
(b)(iv)1.	weight = 95 × 9.81 (= 932 N)	C1
	vertical tension force = 280 sin 25° or 280 cos 65° (=118.3 N)	C1
	F = 932 + 118	A1
	= 1100 (1050) N	
(b)(iv)2.	horizontal tension force = 280 cos 25° or 280 sin 65° (= 253.8 N)	C1
	resultant force = 95 × 1.4 (= 133 N)	C1
	133 = 253.8 – R	A1
	R = 120 (120.8) N	

$89.\ 9702_s17_qp_22\ Q:\ 2$

	Answer	Mark
(a)	rate of change of displacement or change in displacement/time taken	B1
(b)(i)	$s = ut + \frac{1}{2}at^2$	C1
	$t = [(2 \times 1.25) / 9.81]^{1/2} (= 0.5048 s)$	C1
	or	
	$v^2 = u^2 + 2as$ $v_{\text{vert}} = (2 \times 9.81 \times 1.25)^{1/2} (= 4.95)$	(C1)
	$t = [2s/(u+v)] = 2 \times 1.25/4.95 (= 0.5048 s)$	(C1)
	v = d/t = 1.5/0.50(48) = 3.0 (2.97) ms ⁻¹	A1
(b)(ii)	vertical velocity = at = 9.81 × 0.5048 (= 4.95) [using t = 0.50 gives 4.9]	C1
	velocity = $[(v_h)^2 + (v_v)^2]^{1/2}$	C1
	= [(2.97) ² + (4.95) ²] ^{1/2} = 5.8 (5.79) [using <i>t</i> = 0.50 leads to 5.7]	A1
	direction (= tan ⁻¹ 4.95/2.97) = 59°	A1
(b)(iii)	kinetic energy = $\frac{1}{2}mv^2$	C1
	$= \frac{1}{2} \times 0.45 \times (5.8)^2$	A1
	= 7.6 (7.57) J [using <i>t</i> = 0.50 leads to 7.3 J]	

	Answer	Mark
(b)(iv)	potential energy = mgh	C1
	= (0.45 × 9.81 × 1.25)	A1
	= 5.5 (5.52) J	
(c)	there is KE of the ball at the start/leaving table or the ball has an initial/constant horizontal velocity or the ball has velocity at start/leaving table	B1

90. $9702 m16 qp_22$ Q: 2

(a)	change in velocity/time	(taken) or	rate of change of velocity	B1

(b) (i)
$$v_X = (24/1.5) = 16 \,(\text{m s}^{-1})$$

(ii)
$$\tan 28^\circ = v_Y/v_X$$
 or $v_X = v \cos 28^\circ$ and $v_Y = v \sin 28^\circ$
 $v_Y = 16 \tan 28^\circ$ or $v_Y = 16 \times (\sin 28^\circ /\cos 28^\circ)$ so $v_Y = 8.5 \,(\text{m s}^{-1})$

(iii)
$$v = u + at$$

 $t = (0 - 8.5)/(-9.81)$
 $= 0.87(s)$
C1

(iv) straight line from positive v_Y at t = 0 to negative v_Y at t = 1.5 s M1 line starts at (0, 8.5) and crosses t-axis at (0.87, 0) and does not go beyond t = 1.5 s. A1

(c) (i)
$$(v^2 = u^2 + 2as)$$
 $0 = 8.5^2 + 2(-9.81)s$
or $(s = ut + \frac{1}{2}at^2)$ $s = 8.5 \times 0.87 + \frac{1}{2} \times (-9.81) \times 0.87^2$
or $(s = vt - \frac{1}{2}at^2)$ $s = 0 - \frac{1}{2} \times (-9.81) \times 0.87^2$
or $(s = \frac{1}{2}(u + v)t)$ or area under graph) $s = 0.5 \times 8.5 \times 0.87$

(ii)
$$\Delta E_{P} = mg\Delta h$$
 (allow $E = mgh$) C1
 $m = 22 / (9.81 \times 3.7)$
 $= 0.61 \text{ (kg)}$ A1

(d) acceleration (of freefall) is unchanged/not dependent on mass, and so no effect (on maximum height)

or explanation in terms of energy:

(initial) KE \propto mass, (Δ)KE = (Δ)PE, (max) PE \propto mass, and so no effect (on maximum height)

В1

91. 9702 s16 qp 22 Q: 1

(b) (i)
$$v = 0 + at$$
 or $v = at$

$$(a = 36/19 =) 1.9 (1.8947) \text{ ms}^{-2}$$
 A1 [2]

(ii)
$$s = \frac{1}{2}(u+v)t$$
 or $s = \frac{v^2}{2a}$ or $s = \frac{1}{2}at^2$

$$= \frac{1}{2} \times 36 \times 19$$
 $= \frac{36^2}{(2 \times 1.89)}$ $= \frac{1}{2} \times 1.89 \times 19^2$

(iii) 1.
$$(\Delta KE =) \frac{1}{2} \times 95 \times (36)^2$$

2.
$$(\Delta PE =) 95 \times 9.81 \times 340 \sin 40^{\circ}$$
 or $95 \times 9.81 \times 218.5$

(iv) work done (by frictional force) =
$$\Delta PE - \Delta KE$$

(v)
$$-ma = mg \sin 20^{\circ} - f$$
 or $ma = -mg \sin 20^{\circ} + f$ C1

$$-95 \times 3.0 = 95 \times 3.36 - f$$

$$f = 600 (604) \,\mathrm{N}$$
 A1 [2]

92. $9702_s16_qp_23$ Q: 3

(a) (gravitational potential energy is) the energy/ability to do work of a <u>mass</u> that it has or is stored due to its position/height in a gravitational field

B1

kinetic energy is energy/ability to do work a object/body/mass has due to its speed/velocity/motion/movement

B1 [2]

(b) (i)
$$s = [(u+v)t]/2$$
 or acceleration = 9.8/9.75 (using gradient) C1

=
$$[(7.8 + 3.9) \times 0.4]/2$$
 or $s = 3.9 \times 0.4 + \frac{1}{2} \times 9.75 \times (0.4)^2$ C1

$$s = 2.3(4) \,\mathrm{m}$$
 A1 [3]

(ii)
$$a = (v - u)/t$$
 or gradient of line

=
$$(7.8 - 3.9)/0.4 = 9.8 (9.75) \text{ m s}^{-2} (allow \pm \frac{1}{2} \text{ small square in readings})$$
 A1 [2]

(iii) KE =
$$\frac{1}{2} m v^2$$

C1

change in kinetic energy =
$$\frac{1}{2} mv^2 - \frac{1}{2} mu^2$$

$$= \frac{1}{2} \times 1.5 \times (7.8^2 - 3.9^2)$$

C1

$$= 34 (34.22) J$$

Α1 [3]

(c) work done = force
$$\times$$
 distance (moved) or Fd or Fx or mgh or mgd or mgx M1

=
$$1.5 \times 9.8 \times 2.3 = 34$$
 (33.8) J (equals the change in KE)

Α1 [2]

93.
$$9702_{\text{w}}16_{\text{qp}}22$$
 Q: 2

(a)
$$\Delta E = mg\Delta h$$

C1

=
$$0.030 \times 9.81 \times (-)0.31$$

$$= (-)0.091 J$$

[2]

(b)
$$E = \frac{1}{2}mv^2$$

C1

(initial)
$$E = \frac{1}{2} \times 0.030 \times 1.3^2$$
 (= 0.0254)

C1

$$0.5 \times 0.030 \times v^2 = (0.5 \times 0.030 \times 1.3^2) + (0.030 \times 9.81 \times 0.31)$$
 so $v = 2.8 \,\mathrm{m\,s^{-1}}$ or

 $0.5 \times 0.030 \times v^2 = (0.0254) + (0.091)$ so $v = 2.8 \text{ ms}^{-1}$

[3] Α1

(c) (i)
$$0.096 = 0.030(v + 2.8)$$

C1

$$v = 0.40 \,\mathrm{m \, s^{-1}}$$

Α1

[2]

(ii)
$$F = \Delta p/(\Delta)t$$
 or $F = A$

$$= 0.096/20 \times 10^{-3}$$
 or

$$0.030 (0.40 + 2.8)/20 \times 10^{-3}$$

C1

Α1 [2]

(d) kinetic energy (of ball and wall) decreases/changes/not conserved, so inelastic

(relative) speed of approach (of ball and wall) not equal to/greater than (relative) speed of separation, so inelastic.

B1 [1]

(e) force = work done/distance moved

$$= (0.091 - 0.076)/0.60$$

C1

$$= 0.025 N$$

[2] Α1

94. 9702_s15_qp_23 Q: 2		
(a) constant rate of increase in velocity/acceleration from $t = 0$ to $t = 8$ s	B1	
<u>constant</u> deceleration from $t = 8$ s to $t = 16$ s or constant rate of increase in velocity in the opposite direction from $t = 10$ s to $t = 16$ s	B1	[2]
(b) (i) area under lines to 10s	C1	
(displacement =) (5.0×8.0) / 2 + (5.0×2.0) / 2 = 25 m or $\frac{1}{2}$ (10.0 × 5.0) = 25 m	A1	[2]
(ii) $a = (v - u)/t$ or gradient of line	C1	
= (-15.0 -5.0) / 8.0		
$= (-) 2.5 \mathrm{m}\mathrm{s}^{-2}$	A1	[2]
(iii) KE = $\frac{1}{2}mv^2$	C1	
$= 0.5 \times 0.4 \times (15.0)^2 = 45 \mathrm{J}$	A1	[2]
(c) (distance =) $25 \text{ (m)} (= ut + \frac{1}{2}at^2) = 0 + \frac{1}{2} \times 2.5 \times t^2$	C1	
(t = 4.5 (4.47) s therefore) time to return = 14.5 s	A1	[2]
95. 9702_w15_qp_21 Q: 3		
(a) work done is force × distance moved in direction of force		
or no work done along PQ as no displacement/distance moved in direction of force	В1	
work done is same in vertical direction as same distance moved in direction of force	В1	[2]
(b) (i) at maximum height $t = 1.5$ (s) or $s = \frac{1}{2}(u + v)t$, $s = 11$ m and $t = 1.5$ s	C1	
$V_{\rm v} = 0 + 9.81 \times 1.5$ $V_{\rm v} = (11 \times 2) / 1.5$		
$= 15 (14.7) \mathrm{m s}^{-1}$	A1	[2]

(ii) straight line from (0,0) to (3.00, 25.5)

В1

[1]

C1

Α1

[1]

96. $9702 w15 qp_2$ Q: 2

(a) (i)
$$v = u + at$$

$$0 = 3.6 - 3.0t$$

$$t = 3.6/3.0 = 1.2 s$$
 A1 [2]

(ii) (distance to rest from
$$P = (3.6 \times 1.2)/2 = 2.2 \times (2.16) \text{ m}$$

$$[0 - (3.6)^2]/[2 \times (-3.0)] = 2.2 (2.16) \text{ m}$$

$$3.6 \times 1.2 - \frac{1}{2} \times 3.0 \times (1.2)^2 = 2.2 (2.16) \text{ m}$$

or

$$0 + \frac{1}{2} \times 3.0 \times (1.2)^2 = 2.2 (2.16) \,\mathrm{m}$$

$$v^2 = u^2 + 2as = 2 \times 3.0 \times 3.84 (= 23.04)$$

or

$$x + 2 \times 2.16 = 6.0$$
 gives $x = 1.68$ (m) (C1)

$$v^2 = 3.6^2 + 2 \times 1.68 \times 3.0 \ (= 23.04)$$
 (M1)

or correct method with intermediate time calculated (t = 1.6 s from Q to R)

$$v = 4.8 \,\mathrm{m \, s^{-1}}$$
 A0 [2]

- (c) straight line from $v = 3.6 \text{ m s}^{-1}$ to v = 0 at t = 1.2 s
 - straight line continues with the same gradient as v changes sign B1
 - straight line from v = 0 intercept to $v = -4.8 \,\mathrm{m \, s^{-1}}$

(d) difference in KE =
$$\frac{1}{2}m(v^2 - u^2)$$

= $0.5 \times 0.45 (4.8^2 - 3.6^2)$ [= $5.184 - 2.916$] C1

[1]

97. $9702 w15 qp_23$ Q: 3

(a) (i) 1.
$$s = ut + \frac{1}{2}at^2$$

$$192 = \frac{1}{2} \times 9.81 \times t^2$$

$$t = 6.3 (6.26)$$
s A1 [2]

2.
$$\max E_k (= mgh) = 0.27 \times 9.81 \times 192$$

or

calculation of
$$v = 61.4$$
) and use of $E_K = \frac{1}{2} mv^2 = \frac{1}{2} \times 0.27 \times (61.4)^2$ (C1)

$$\max E_k = 510 (509) J$$
 A1 [2]

- (ii) velocity is proportional to time **or** velocity increases at a constant rate as acceleration is constant or resultant force is constant
- (iii) use of v = at or $v^2 = 2as$ or $E = \frac{1}{2}mv^2$ to give $v = 61(.4) \,\text{m s}^{-1}$ B1 [1]
- (b) (i) R increases with velocity

 resultant force is mg R or resultant force decreases

 B1
 - acceleration decreases B1 [3] (ii) at $v = 40 \,\mathrm{m \, s^{-1}}$, $R = 0.6 \,\mathrm{(N)}$ C1 $0.27 \times 9.8 - 0.6 = 0.27 \times a$

$$a = 7.6 (7.58) \,\mathrm{m \, s^{-2}}$$
 A1 [2]

(iii) R = weight for terminal velocity B1

either weight requires velocity to be about 80 m s⁻¹ or at 60 m s⁻¹, R is less than weight

so does not reach terminal velocity B1 [2]

98. 9702 s20 qp 22 Q: 1

	Answer	Mark
(a)	(velocity =) change in displacement / time (taken)	B1
(b)	units of F: kg m s ⁻²	C1
	units of k : kg m s ⁻² /[m ² × (m s ⁻¹) ²]	A1
	= kg m ⁻³	
(c)	P = Fv	C1
	$4.8 \times 10^4 = 0.24 \times 5.1 \times v^3$	C1
	$v = 34 \text{ m s}^{-1}$	A1

99. 9702_s19_qp_23 Q: 3

	Answer	Mark
(a)	P = Fv	C1
	$P = 8.9 \cos 30^{\circ} \times 0.60$	A1
	= 4.6 W	
(b)	p = F/A	C1
	$F = 8.9 \sin 30^{\circ} + (0.24 \times 9.81)$	C1
	(= 6.80 N)	
	A = 6.80/3500	A1
	$= 1.9 \times 10^{-3} \mathrm{m}^2$	
(c)(i)	upwards/up	B1
(c)(ii)	the Earth/planet	B1

 $100.\ 9702_w19_qp_23\ Q:\ 2$

Answer	Mark
(work done =) force × distance moved in direction of force	B1
1. acceleration = gradient or $a = (v - u)/t$ or $a = \Delta v/t$	C1
e.g. a = 2.4/3.0	A1
= 0.80 m s ⁻²	
2. tension in cable = $(13.0 + 2.0) \times 10^3$	C1
work done = $15 \times 10^3 \times (3.0 \times 2.4)$	A1
= 1.1 × 10 ⁵ J	
power = Fv	C1
$v = 2.0 \text{ (m s}^{-1})$	C1
input power = $(1.6 \times 10^4 \times 2.0) / 0.67$	A1
$= 4.8 \times 10^4 \text{ W}$	
work is done against friction so (increase in) GPE is less (than work done by motor)	A1
energy is lost or transferred or converted to heat/thermal energy due to friction or resistance force	
work is done lifting the cable so GPE is less	
	(work done =) force × distance $\underline{\text{moved}}$ in direction of force 1. acceleration = gradient or $a = (v - u)/t$ or $a = \Delta v/t$ e.g. $a = 2.4/3.0$ $= 0.80 \text{ m s}^{-2}$ 2. tension in cable = $(13.0 + 2.0) \times 10^3$ $\text{work done} = 15 \times 10^3 \times (3.0 \times 2.4)$ $= 1.1 \times 10^5 \text{ J}$ $\text{power} = Fv$ $v = 2.0 \text{ (m s}^{-1})$ input power = $(1.6 \times 10^4 \times 2.0)/0.67$ $= 4.8 \times 10^4 \text{ W}$ work is done against friction so (increase in) GPE is less (than work done by motor) or energy is lost or transferred or converted to heat/thermal energy due to friction or resistance force or

$101.\ 9702_w18_qp_21\ \ Q:\ 3$

	Answer	Mark
(a)(i)	work (done)/time (taken)	B1
(a)(ii)	energy of a mass due to its position in a gravitational field	B1
(b)(i)	$P = F_V$	C1
	$= 2.0 \times 10^{3} \times 45$ $= 9.0 \times 10^{4} \text{ W}$	A1
(b)(ii)	1. $W = (2.0 \times 10^3) \times (45 \times 3.0 \times 60)$ or $W = 9.0 \times 10^4 \times 3.0 \times 60$	C1
	$W = 1.6 \times 10^7 \mathrm{J}$	A1
	2. $(\Delta)E_P = mg(\Delta)h$	C1
	= 1200 × 9.81 × 3.3 × 3.0 × 60	A1
	$=7.0 \times 10^6 \text{ J}$	
	3. $W = 1.6 \times 10^7 - 7.0 \times 10^6$	A1
	$=9.0\times10^{6}\mathrm{J}$	
(b)(iii)	force = $(9.0 \times 10^6)/(45 \times 3.0 \times 60)$	A1
	$=1.1 \times 10^{3} \text{ N}$	
(b)(iv)	constant velocity so no resultant force	B1
	no resultant force so in equilibrium	B1

$102.\ 9702_m17_qp_22\ Q:\ 3$

	Answer	Mark
(a)	change of displacement/time (taken)	B1
(b)(i)	constant velocity, so resultant force is zero	M1
	(so car is) in (dynamic) equilibrium	A1
(b)(ii)	$F_{\rm D} = 0.40 ({\rm kN}) {\rm or} 0.40 \times 10^3 ({\rm N})$	C1
	component of weight = $2.0 \times 10^{3} - 0.40 \times 10^{3}$ = 1.6×10^{3} N	A1
(b)(iii)	P = Fv	C1
	$= 2.0 \times 10^{3} \times 9.0 = 1.8 \times 10^{4} \mathrm{W}$	A1
(b)(iv)	(driving) force = $1.8 \times 10^4 / 15$ (= 1.2×10^3)	C1
	$F_0 = 0.66 \text{ (kN)} \text{ or } 0.66 \times 10^3 \text{ (N)}$	C1
•	acceleration = $(1.2 \times 10^3 - 0.66 \times 10^3)/850$ = $0.64 (0.635) \text{ m s}^{-2}$	A1

103. $9702_{s15}qp_23$ Q: 3

(a)	(power =) work done / time	(taken) or rate of work done	A1	[1]
-----	----------------------------	------------------------------	----	-----

(b) (i)
$$F - R = ma$$
 C1

$$F = 1500 \times 0.82 + 1200$$

$$= 2400 (2430) N$$
 A1 [3]

(ii)
$$P = Fv$$

$$= (2430 \times 22) = 53\,000\,(53\,500)\,W$$
 A1 [2]

(c) (there is maximum power from car and) resistive force = force produced by car hence no acceleration

suggestion in terms of power produced by car and power wasted to overcome resistive force

[1]

 $104.\ 9702_m20_qp_22\ Q:\ 3$

	Answer	Mark
(a)	force × displacement in the direction of the force	B1
(b)(i)	displacement = 4.4 × 30	C1
	work done = 140 cos 30° × 4.4 × 30	C1
	= 1.6 × 10 ⁴ J	A1
(b)(ii)	p = F/A	C1
	F = 860 – 140 sin 30° (= 790)	C1
	A = 790 / 2400 = 0.33 m ²	A1
(b)(iii)	$\sigma = F/A$ or $F/\pi r^2$ or $4F/\pi d^2$	C1
	$9.6 \times 10^6 = 4 \times 140 / \pi d^2$	A1
	$d = 4.3 \times 10^{-3} \mathrm{m}$	

	Answer	Mark
(c)	$E = \frac{1}{2}Fx$ or $\frac{1}{2}kx^2$ or area under graph	C1
	$(\Delta)E = \frac{1}{2} \times (140 + 210) \times 0.20 \times 10^{-3}$ or	C1
	(Δ) $E = (\frac{1}{2} \times 210 \times 0.60 \times 10^{-3}) - (\frac{1}{2} \times 140 \times 0.40 \times 10^{-3})$ or	
	$(\Delta)E = (140 \times 0.20 \times 10^{-3}) + (\frac{1}{2} \times 0.20 \times 10^{-3} \times 70)$	
	(\triangle)E = [½×3.5 × 10 ⁵ × (0.60 × 10 ⁻³) ²] – [½ × 3.5 × 10 ⁵ × (0.40 × 10 ⁻³) ²]	
	$\Delta E = 0.035 \mathrm{J}$	A1

$105.\ 9702_w19_qp_23\ Q:\ 4$

	Answer	Mark
(a)(i)	p = mv	C1
	= $0.2(00) \times 6.(00) \times \sin 60(.0)^{\circ}$ or $0.2(00) \times 6.(00) \times \cos 30(.0)^{\circ}$	A1
	= 1.04 kg m s ⁻¹	
(a)(ii)	$0.300 \times v_x \times \sin 60.0^\circ = 1.04$	A1
	$v_x = 4.00 \mathrm{m s^{-1}}$	
(a)(iii)	0.30 × 4.0 × cos 60° or 0.20 × 6.0 × cos 60° or (0.30 + 0.20)v or 0.50v	C1
	$0.30 \times 4.0 \times \cos 60^{\circ} + 0.20 \times 6.0 \times \cos 60^{\circ} = (0.30 + 0.20)v \text{ or } 0.50v$	A1
	so $v = 2.4 \mathrm{m s^{-1}}$	
(b)(i)	$E = \frac{1}{2}mv^2$	C1
	$1/2 \times 0.50 \times 2.4^2 = 1/2 \times 72 \times x^2$	C1
	x = 0.20 m	A1
(b)(ii)	straight line from the origin sloping upwards	B1
	2. line drawn from a positive value of E_k at $x = 0$ to a positive value of x at $E_k = 0$	M1
	line has an increasing downwards slope	A1

$106.\ 9702_m18_qp_22\ Q\hbox{:}\ 3$

	Answer	Mark
(a)(i)	force / (cross-sectional) area	B1
(a)(ii)	extension / original length	B1
(b)(i)	measure / determine / find diameter	B1
	using a micrometer / digital calipers	B1
	several measurements in different places / along the wire / around the circumference (and average them)	B1
(b)(ii)	$E = \sigma/\epsilon \text{ or } E = FL/Ax \text{ or } E = \text{gradient} \times (L/A)$ $E = (4 \times 2.5)/(0.8 \times 10^{-3}) \times (9.4 \times 10^{-8})$	C1
	= 1.3 × 10 ¹¹ Pa	A1

	Answer	Mark
(b)(iii)	$E = \frac{1}{2} \text{Kx or } E = \frac{1}{2} \text{Kx}^2 \text{ or } E = \text{area under graph}$ $E = \frac{1}{2} \times (2+4) \times 0.4 \times 10^{-3}$ or $E = (\frac{1}{2} \times 4 \times 0.8 \times 10^{-3}) - (\frac{1}{2} \times 2 \times 0.4 \times 10^{-3})$ or $E = [\frac{1}{2} \times 5000 \times (0.8 \times 10^{-3})^2] - [\frac{1}{2} \times 5000 \times (0.4 \times 10^{-3})^2]$	C1
	$E = 1.2 \times 10^{-3} \text{ J}$	A1
(c)	straight line from the origin and above the original line	M1
	straight line passes through (0.80, 8.0)	A1

 $107.\ 9702_s18_qp_21\ Q:\ 2$

	Answer	Mark
(a)	a body continues at (rest or) constant velocity unless acted upon by a resultant force	B1
(b)(i)1.	from 0–2 s, distance = $\frac{1}{2} \times 2 \times 6.8$ (= 6.8 m) and from 2–3 s, distance = $\frac{1}{2} \times 1 \times 3.4$ (= 1.7 m)	C1
	magnitude of displacement = 5.1 m	A1
	direction of displacement is down(wards)	B1
(b)(i)2.	$(\Delta E) = mg\Delta h$ or $(E) = mgh$ or $(E) = Wh$	C1
	$(\Delta)E = 15 \times 5.1$	A1
	= (-) 77 J	
(b)(ii)	a = (v - u)/t or $a = gradient or a = dv/dt$	C1
	a = 3.4 m s ⁻²	A1
(b)(iii)	T – W = ma or T – mg = ma	C1
	T = 15 + (15/9.81) × 3.4 = 20 N or 20.2 N	A1
(b)(iv)	$E = F/A\varepsilon$ or $E = \sigma/\varepsilon$ and $\sigma = F/A$	C1
	$\varepsilon = 20/(2.8 \times 10^{-5} \times 1.7 \times 10^{11})$	C1
	= 4.2 × 10 ⁻⁶	A1
(b)(v)	block is in equilibrium/has no resultant force	B1
	block could be stationary (or have constant velocity/speed) (so no, not possible to deduce)	B1

 $108.\ 9702_s18_qp_22\ \ Q{:}\ 5$

	Answer	Mark
(a)	$\rho = mIV$	C1
	= (560/9.81)/(1.2 × 0.018)	A1
	$= 2600 \text{kg m}^{-3}$	
(b)	$(\Delta)p = 940 \times 9.81 \times 1.2$	C1
	(upthrust =) 940 × 9.81 × 1.2 × 0.018 = 200 N	A1
(c)(i)	tension = 560 – 200	A1
	= 360N	
(c)(ii)	P= Fv	C1
•	= 360 × 0.020	A1
	= 7.2W	
(d)(i)	upthrust decreases	B1
	tension (in wire) increases	M1
	power (output of motor) increases	A1
(d)(ii)	there is work done (on the cylinder) by the upthrust	B1
	or GPE of oil decreases (as it fills the space left by cylinder and so total energy is conserved)	

 $109.\ 9702_w18_qp_23\ Q:\ 1$

	Answer	Mark
(a)	current temperature (allow amount of substance, luminous intensity)	В2
	any two correct answers, 1 mark each	
(b)(i)	$W = 2 \times (150 \times \sin 17^{\circ})$ or $2 \times (150 \times \cos 73^{\circ})$	C1
	W = 88 N	A1
(b)(ii)	1. σ = F/A	C1
	= 150/(7.5 × 10 ⁻⁶)	A1
	$= 2.0 \times 10^7 Pa$	
	2. ε = σ / E	C1
	$=2.0\times10^{7}/(2.1\times10^{11})$	A1
	= 9.5 × 10 ⁻⁵	

 $110.9702_s17_qp_22$ Q: 3

	Answer	Mark
(a)	E = stress/strain or (F/A)/(e/l)	C1
	= [gradient \times 3.5] / [$\pi \times (0.19 \times 10^{-3})^2$]	C1
	e.g. $E = [\{(40-5)/([11.6-3.2] \times 10^{-3})\} \times 3.5]/[\pi \times (0.19 \times 10^{-3})^2]$ or $[4170 \times 3.5]/[\pi \times (0.19 \times 10^{-3})^2]$	
	$E (= 1.3 \times 10^{11}) = 0.13$ TPa (allow answers in range 0.120–0.136 TPa)	A1
(b)	a larger <u>range</u> of <i>F</i> required or <u>range</u> greater than 35 N	B1

111. $9702_{\text{w}}17_{\text{qp}}21 \text{ Q: } 4$

	Answer	Mark
(a)	(strain =) extension / <u>original</u> length	B1
(b)(i)	$E = \sigma l \varepsilon$	C1
	maximum stress = $2.1 \times 10^{11} \times 4.0 \times 10^{-4}$ = 8.4×10^{7} Pa	A1
(b)(ii)	$\sigma = F/A$	C1
	minimum area = $8.0 \times 10^3 / 8.4 \times 10^7$	A1
	$=9.5\times10^{-5}$ m ²	

	Answer	Mark
(a)	$p = 1000 \times 9.81 \times 7.0 \times 10^{-2} \text{ or } 1000 \times 9.81 \times 1.9 \times 10^{-2}$	C1
	$\Delta p = 1000 \times 9.81 \times (7.0 \times 10^{-2} - 1.9 \times 10^{-2}) \text{ or } 686 - 186$	A1
	= 500 Pa	
(b)	$F = pA \text{ or } (\Delta)F = \Delta p \times A$	C1
	upthrust = $500 \times (5.1 \times 10^{-2})^2 = 1.3 \text{N}$	A1
	or upthrust = $(686 - 186) \times (5.1 \times 10^{-2})^2 = 1.3 \text{ N}$	
	or upthrust = $1000 \times 9.81 \times 5.1 \times 10^{-2} \times (5.1 \times 10^{-2})^2 = 1.3 \text{ N}$	
(c)	force = 4.0 – 1.3	A1
	= 2.7 N	

	Answer	Mark
(d)	extension/x/e = 2.7/30	C1
	= 0.09 (m) or 9 (cm)	C1
	height above surface = 9 – 7	A1
	= 2 cm	
(e)(i)	mass = 4.0/9.81	C1
	acceleration = 2.7/(4.0/9.81)	A1
	$= 6.6 \mathrm{m}\mathrm{s}^{-2}$	
(e)(ii)	viscous force increases (and then becomes constant)	M1
	(weight and upthrust constant so) acceleration decreases (to zero)	A1

113. 9702_s16_qp_22 Q: 3

(a) Young modulus = stress/strain B1 [1]

(b) (i) $E = (F \times l)/(A \times e)$ or $e = (F \times l)/(A \times E)$

e ∞ 1/*E*

or ratio $e_C/e_S = E_S/E_C$ or $(1.9 \times 10^{11})/(1.2 \times 10^{11})$ or 19/12

(ratio =) 1.6 (1.58) A1 [3]

(ii) two straight lines from (0,0) with **S** having the steepest gradient B1 [1]

PapaCambridge

C1

 $114.\ 9702_w16_qp_22\ Q:\ 3$

(a) resultant force (in any direction) is zero resultant moment/torque (about any point) is zero	B1 B1	[2]
(b) (i) force = 33 sin 52° or 33 cos 38° = 26 N	A1	[1]
(ii) 26×0.30 or $W \times 0.20$ or 12×0.40	C1	
$26 \times 0.30 = (W \times 0.20) + (12 \times 0.40)$	C1	
W = 15 N	A1	[3]
(c) (i) $E = \Delta \sigma / \Delta \varepsilon$ or $E = \sigma / \varepsilon$	C1	
$\Delta \sigma = 2.0 \times 10^{11} \times 7.5 \times 10^{-4}$ = 1.5 × 10 ⁸ Pa	A1	[2]
(ii) $\Delta \sigma = \Delta F/A$ or $\sigma = F/A$	C1	
$A = 78/1.5 \times 10^8 \ (= 5.2 \times 10^{-7} \mathrm{m}^2)$	C1	
$5.2 \times 10^{-7} = \pi d^2/4$		
$d = 8.1 \times 10^{-4} \mathrm{m}$	A1	[3]

 $115.\ 9702_s20_qp_23\ Q{:}\ 3$

	Answer	Mark
(a)	for a body in (rotational) equilibrium	B1
	sum/total of clockwise moments about a point = sum/total of anticlockwise moments about the (same) point	B1
(b)(i)	$(W \times 0.45)$ or (19×1.3) or $(W \times 1.85)$ or (22×2.6)	C1
	$(W \times 0.45) + (19 \times 1.3) + (W \times 1.85) = (22 \times 2.6)$ so $W = 14$ N	A1
(b)(ii)	magnitude = 19 + 14 + 14 - 22	A1
	= 25 N direction: vertically upwards	A1
(c)(i)	the extension is zero when the force is zero	B1
	graph is a straight line and (so) Hooke's law obeyed	B1
(c)(ii)	k = F/x or $k = gradient$	C1
	e.g. k = 60 / (1.00 – 0.25)	A1
	k = 80 N m ⁻¹	
(c)(iii)	area shaded below graph line between $L = 0.25$ m and $L = 0.75$ m	B1

116. 9702_w20_qp_21 Q: 4

	Answer	Mark
(a)(i)	(stress =) force / cross-sectional area	B1
(a)(ii)	(strain =) extension / original length	B1
(b)(i)	E = FL/Ax	C1
	= GL / A	A1
(b)(ii)	straight line from origin above the original line	M1
	line ends at point (4 small squares, F ₁).	A1
(b)(iii)	shaded area below the graph line and between the two vertical dashed lines	B1
	2. remove the force/F/F ₂ and the wire goes back to original length/zero extension	B1
(b)(iv)	values have a large range	B1

117. 9702_w20_qp_22 Q: 3

	Answer	Mark
(a)(i)	F=kx	C1
	$F_1 = 800 \times 0.045$	A1
	= 36 N	
(a)(ii)	(E =) ½kx² or ½Fx or area under graph	C1
	$1/2 \times 800 \times (0.045)^2$ or $1/2 \times 36 \times 0.045 = 0.81$ (J)	A1
(b)(i)	efficiency = (0.72/0.81) × 100	A1
	= 89%	
(b)(ii)	$E = \frac{1}{2}mv^2$	C1
	p = mv	C1
	$0.72 = \frac{1}{2} \times 0.020 \times v^2$ and $p = 0.020 \times v$	A1
	p = 0.17 N s	
(c)(i)	$(\Delta)E = mg(\Delta)h$	C1
	$h = 0.60 / (0.020 \times 9.81) = 3.1 \text{ m}$	A1
(c)(ii)	F = (0.72 - 0.60)/3.1	C1
	= 0.039 N	A1
(c)(iii)	resultant force on ball is less (than that with air resistance) so time (taken) is more (than T)	B1

118. $9702_w20_qp_23$ Q: 4

	Answer	Mark
(a)	compression/extension is proportional to force (provided limit of proportionality is not exceeded)	B1
(b)	(E) = $\frac{1}{2}Fx$ or $\frac{1}{2}kx^2$ or area under graph	C1
	= ½ × 8 × 16 × 10 ⁻² = 0.64 (J)	A1
	or	
	$= \frac{1}{2} \times 50 \times (16 \times 10^{-2})^2 = 0.64 \text{ (J)}$	
(c)(i)	$(E) = \frac{1}{2}mv^2$	C1
	$0.64 = \frac{1}{2} \times 0.076 \times v^2$	A1
	$v = 4.1 \mathrm{m s^{-1}}$	
(c)(ii)	$(\Delta)(E) = mg(\Delta)h$	C1
	= 0.076 × 9.81 × 0.24	C1
	(= 0.18 (J))	
	kinetic energy = 0.64 – 0.18	A1
	= 0.46 J	
(c)(iii)	$v = 4.1 \mathrm{m s^{-1}}$	A1
(d)	W = Fs	C1
	$d = 0.30 + (2\pi \times 0.12) + 0.25 (= 1.3 \text{ m})$	C1
	F = 0.23/1.3	A1
	= 0.18 N	

$119.\ 9702_s19_qp_21\ Q{:}\ 3$

	Answer	Mark
(a)(i)	$E = \frac{1}{2}Fx$ or $E = \frac{1}{2}kx^2$ or $E =$ area under graph	C1
	$E = \frac{1}{2} \times 4.0 \times 0.32 = 0.64 \text{J} \text{ or } E = \frac{1}{2} \times 12.5 \times (0.32)^2 = 0.64 \text{J}$	A1
(a)(ii)	E = mgh or E = Wh	C1
	= 2.5 × 0.32	
	= 0.80 J	A1
(b)(i)	kinetic energy = $0.80 - 0.64$	A1
	= 0.16 J	
(b)(ii)	$E = \frac{1}{2}mv^2$	C1
	$0.16 = \frac{1}{2} \times (2.5/9.81) \times v^2$	
	$v = 1.1 \mathrm{m s^{-1}}$	A1

120. $9702_s18_qp_23$ Q: 4

	Answer	Mark
(a)	(Young modulus =) stress/strain	B1
(b)(i)	$k = F/\Delta L$ or 1/gradient	C1
	= $90 \times 10^3/(2 \times 10^{-3})$ (or other point on line)	A1
	$=4.5\times10^{7} \text{Nm}^{-1}$	
(b)(ii)	$E = \frac{1}{2}F\Delta L$ or $E = \frac{1}{2}k(\Delta L)^2$	C1
	= $\frac{1}{2} \times 90 \times 10^{3} \times 2 \times 10^{-3}$ or $\frac{1}{2} \times 4.5 \times 10^{7} \times (2 \times 10^{-3})^{2}$	C1
	= 90J	A1
(c)	straight line starting from (0, 150) and below original line	M1
	line ends at (90, 147)	A1

 $121.\ 9702_m17_qp_22\ Q:\ 2$

	Answer	Mark
(a)	sum/total momentum of bodies is constant or sum/total momentum of bodies before = sum/total momentum of bodies after	M1
	for an isolated/closed system/no (resultant) external force	A1
(b)(i)	EPE = area under graph or $\frac{1}{2}Fx$ or $\frac{1}{2}kx^2$ and $F = kx$	C1
	energy = $\frac{1}{2} \times 12.0 \times 8.0 \times 10^{-2} = 0.48 \text{J}$ or energy = $\frac{1}{2} \times 150 \times (8.0 \times 10^{-2})^2 = 0.48 \text{J}$	A1
(b)(ii)1	4.0 v _A = 6.0 v _B	C1
	$E_{\rm K} = \frac{1}{2}m{\rm V}^2$	C1
	ratio = $\frac{0.50 \times 4.0}{0.50 \times 6.0} \left(\frac{6.0}{4.0}\right)^2 = 1.5$ or ratio = $\frac{1}{1.5} \times (1.5)^2 = 1.5$	A1
(b)(ii)2	$0.48 = E_K \text{ of A} + E_K \text{ of B}$ = $E_K \text{ of A} + (E_K \text{ of A} / 1.5) = 5/3 \times E_K \text{ of A}$	C1
	E _K of A = 0.29 (0.288) J	A1
(b)(iii)	curve starts from origin and has decreasing gradient	M1
	final gradient of graph line is zero	A1

122. 9702_s17_qp_23 Q: 4

••	Answer	Mark		
(a)	the straight line does not go through the origin/the force is not proportional to extension (so does not obey Hooke's law)	A1		
(b)	astic potential energy			
(c)	remove the force/masses and the spring returns to its original length if elastic			
(d)	work done is represented by/linked to area under the line ($\times g$)			
	work = $\frac{1}{2}$ (145 + 70) × 10 ⁻³ × 9.81 × 120 × 10 ⁻³	C1		
	= 0.13 (0.127) J	A1		

123. $9702 _{m16} _{qp} _{22}$ Q: 3

- (a) (i) (work =) force \times distance moved in the direction of the force. В1
 - (ii) the energy stored (in an object) due to extension/compression/change of shape **B**1
- (b) (i) $E_{\rm K} = \frac{1}{2}mv^2$ C1 $= 0.5 \times 0.40 \times 0.30^{2}$ $= 1.8 \times 10^{-2} (J)$ Α1
 - (ii) (change in) kinetic energy = work done on spring/(change in) elastic potential energy C1 $1.8 \times 10^{-2} = \frac{1}{2} \times F \times 0.080$ $F_{MAX} = 0.45 (N)$ Α1
 - (iii) a = F/m = 0.45/0.40 $= 1.1 (m s^{-2})$ Α1
 - (iv) 1. constant velocity/resultant force is zero, so in equilibrium В1
 - 2. decelerating/resultant force is not zero, so not in equilibrium В1
- .m .quilibrium (c) curved line from the origin M1 with decreasing gradient Α1

 $124.\ 9702_s16_qp_21\ Q:\ 4$

	energy (stored) in a body due to its extension/compression/deformation/ inge in shape/size	B1	[1]
(b) (i)	two values of F/x are calculated which are the same e.g. $10.4/40 = 0.26$ and $6.5/25 = 0.26$	В1	
	or		
	ratio of two forces and the ratio of the corresponding two extensions are calculated which are the same e.g. $5.2/10.4 = 0.5$ and $20/40 = 0.5$	(B1)	
	or		
	gradient of graph line calculated and coordinates of one point on the line used with straight line equation $y = mx + c$ to show $c = 0$	(B1)	
	(so) force is proportional to extension (and so Hooke's law obeyed)	B1	[2]
(b) (ii)	1. $k = F/x$ or $k = gradient$	C1	
	gradient or values from a single point used e.g. $k = 10.4/(40 \times 10^{-2})$		
	$k = 26 \mathrm{N}\mathrm{m}^{-1}$	A1	[2]
	2. work done = area under graph or $\frac{1}{2}Fx$ or $\frac{1}{2}(F_2 + F_1)(x_2 - x_1)$ or $\frac{1}{2}kx^2$ or $\frac{1}{2}k(x_2^2 - x_1^2)$	C1	
	= $\frac{1}{2} \times 10.4 \times 0.4 - \frac{1}{2} \times 5.2 \times 0.2$ or $\frac{1}{2} \times (5.2 + 10.4) \times 20 \times 10^{-2}$ or $\frac{1}{2} \times 26 \times (0.4^{2} - 0.2^{2})$	C1	
	= 1.6 J	A1	[3]
(c) rer	nove the force and the spring goes back to its original length	B1	[1]

125. 9702_w16_qp_21 Q: 3

	(a) force/load is proportional to extension/compression (provided proportionality limit is not exceeded)		[1]
(b) (i)	k = F/x or $k = gradient$	C1	
	$k = 600 \mathrm{N}\mathrm{m}^{-1}$	A1	[2]
(ii)	$(W=) \frac{1}{2}kx^2$ or $(W=) \frac{1}{2}Fx$ or $(W=)$ area under graph	C1	
	$(W=) 0.5 \times 600 \times (0.040)^2 = 0.48 \text{ J}$ or $(W=) 0.5 \times 24 \times 0.040 = 0.48 \text{ J}$	A1	[2]
(iii)	1. $(E_{\rm K} =) \frac{1}{2} m v^2$	C1	
	$= \frac{1}{2} \times 0.025 \times 6.0^2$		
	= 0.45 J	A1	[2]
	2. (work done against resistive force =) 0.48 – 0.45 [= 0.03(0)J]	C1	
	average resistive force = 0.030/0.040	C1	
	= 0.75 N	A1	[3]
(iv)	efficiency = [useful energy out/total energy in] (×100)	C1	
	= [0.45/0.48] (×100)		
	= 0.94 <i>or</i> 94%	A1	[2]

 $126.\ 9702_w16_qp_23\ Q:\ 3$

124. 5102_ #10_qp_25		
 (a) force/load is proportional to extension/compression (provided proportionality limit is not exceeded) 	В1	[1]
(b) (i) $k = F/x$ or $k = gradient$	C1	
$k = 600 \mathrm{N}\mathrm{m}^{-1}$	A1	[2]
(ii) $(W=) \frac{1}{2}kx^2$ or $(W=) \frac{1}{2}Fx$ or $(W=)$ area under graph	C1	
$(W=) 0.5 \times 600 \times (0.040)^2 = 0.48 \text{J}$ or $(W=) 0.5 \times 24 \times 0.040 = 0.48 \text{J}$	A1	[2]
(iii) 1. $(E_K =) \frac{1}{2}mv^2$	C1	
$= \frac{1}{2} \times 0.025 \times 6.0^{2}$		
= 0.45 J	A1	[2]
2. (work done against resistive force =) 0.48 – 0.45 [= 0.03(0)J]	C1	
average resistive force = 0.030/0.040	C1	
= 0.75 N	A1	[3]
(iv) efficiency = [useful energy out/total energy in] (×100)	C1	
= [0.45/0.48] (×100)		
= 0.94 or 94%	A1	[2]
127. 9702_s15_qp_21 Q: 4		
(a) (i) two sets of co-ordinates taken to determine a constant value (F/x)	M1	
F/x constant hence obeys Hooke's law	A1	[2]
 or gradient calculated and one point on line used to show no intercept hence obeys Hooke's law 	(M1) (A1)	
(ii) gradient or one point on line used e.g. $4.5/1.8 \times 10^{-2}$	C1	
$(k =) 250 \mathrm{N}\mathrm{m}^{-1}$	A1	[2]
(iii) work done or E_P = area under graph or $\frac{1}{2}Fx$ or $\frac{1}{2}kx^2$	C1	
	04	
= $0.5 \times 4.5 \times 1.8 \times 10^{-2}$ or $0.5 \times 250 \times (1.8 \times 10^{-2})^2$	C1	
$= 0.5 \times 4.5 \times 1.8 \times 10^{-2} \text{ or } 0.5 \times 250 \times (1.8 \times 10^{-2})^{2}$ $= 0.041 (0.0405) \text{J}$	A1	[3]
		[3]
= 0.041 (0.0405)J		[3]
$= 0.041 (0.0405) J$ (b) KE = $\frac{1}{2}mv^2$	A1	[3]

128. 9702 w15 qp22 Q: 3

(a) (i)
$$k = F/x$$
 or 1/gradient

$$(k = 4.4/(5.4 \times 10^{-2})) = 81 (81.48) \text{N m}^{-1}$$
 A1 [2]

(ii) work done = area under line or
$$\frac{1}{2}Fx$$
 or $\frac{1}{2}kx^2$

$$(= 0.5 \times 4.4 \times 5.4 \times 10^{-2} =) 0.12 (0.119) J$$
 A1 [2]

EPE changes to KE of trolley/T and KE of block or to give lower KE to trolley В1

[2]

В1

(ii) change in momentum =
$$m(v + u)$$

C1

$$= 0.25 (0.75 + 1.2) = 0.49 (0.488) Ns$$

[2]

129. 9702 w20 qp 21 Q: 5

		Answer	Mark
(a)	$v = \lambda / T$ or $v = f\lambda$ and $f = 1 / T$		C1
	$v = 8.0 \times 10^{-2} / 0.40$ = 0.20 m s ⁻¹		A1
(b)	<i>I</i> ∝ <i>A</i> ²	10	C1
	ratio = 2 ² /4 ²		C1
	= 0.25	2	A1

 $130.\ 9702_w15_qp_21\ Q:\ 2$

(a) ps =
$$10^{-12}$$
(s) or $T = 4 \times 50 \times 10^{-12}$ (s)

$$v = f\lambda$$
 or $v = \lambda/T$

$$\lambda = 3.0 \times 10^8 \times 4 \times 50 \times 10^{-12}$$

$$= 0.06(0) \,\mathrm{m}$$
 A1 [4]

(b)
$$1500 = 3.0 \times 10^8 \times 4 \times \text{time-base setting or } T = 5 \times 10^{-6} \text{s}$$

time-base setting = 1.3 (1.25)
$$\mu$$
s cm⁻¹ A1 [2]

131. 9702_w18_qp_22 Q: 4

	Answer	Mark
(a)	vibration(s)/oscillation(s) (of particles) parallel to direction of propagation of energy	B1
(b)(i)	phase difference = 180°	A1
(b)(ii)	$v = f\lambda$	C1
	$\lambda/2 = 25$ (cm) or 0.25 (m)	C1
	f = 330/0.50	A1
	= 660 Hz	
b)(iii)	(readings from graph =) 2.6 and 4.0	C1
	ratio = (2.6/4.0) ^{1/2}	A1
	= 0.81	

132. 9702_s19_qp_23 Q: 5

	Answer	Mark
(a)	(incident) wave reflects at end/top of tube	B1
	(incident) wave and reflected wave interfere/superpose	B1
(b)	line has maximum value of amplitude at $h = 0$ and $h = 0.60$ m only	B1
	line has minimum/zero value of amplitude at $h = 0.30$ m only	B1
(c)(i)	vertical/along length of tube/along axis of tube	B1
(c)(ii)	phase difference = 0	A1
(d)	$v = f\lambda$	C1
	$v = 340/(2 \times 0.60)$	A1
	= 280 Hz	
(e)	f = 340/0.60	A1
	= 570 Hz	

133. 9702_w19_qp_22 Q: 5

	Answer	Mark
(a)	distance moved by wavefront/energy during one cycle/oscillation/period (of source) or minimum distance between two wavefronts or distance between two adjacent wavefronts	B1
(b)	$(T=)2.0\times2.5$ (= 5.0 ms) or $2.0\times2.5\times10^{-3}$ (= 5.0 × 10 ⁻³ s)	C,
	$f = 1/(5.0 \times 10^{-3})$ = 200 Hz	A
(c)(i)	(path difference =) $8.0 + (20.8^2 - 8.0^2)^{0.5} - 20.8 = 6.4$ (m)	A.
(c)(ii)	 path difference = 4λ waves (meet at C) in phase constructive interference (of waves) 	B
	any two points, one mark each	
(c)(iii)	$v = 200 \times 1.6$ = 320 (ms ⁻¹)	C1
	$\Delta t = 6.4/320 \text{ or } 27.2/320 - 20.8/320$ = 0.020 s	A
(c)(iv)	3λ=6.4	A.
	λ=2.1 m	

$134.\ 9702_s17_qp_22\ Q\hbox{:}\ 5$

	Answer	Mark
(a)	frequency is the number of vibrations/oscillations per unit time or the number of wavefronts passing a point per unit time	B1
(b)	vibrations/oscillation of the air particles are parallel to the direction of it (the direction of travel of the sound wave)	B1
(c)(i)	T = 2(.0) (ms)	C1
	f = 500 Hz	A1
(c)(ii)	1. amplitude increases (time) period decreases 2. amplitude decreases (time) period increases any 3 points	В3

135. 9702_m20_qp_22 Q: 2

	Answer	Mark
(a)	$f_0 = f_S v / (v - v_S)$ 9560 = $f \times 1510 / (1510 - 4.50)$	C1
	f = 9530 Hz	A1
(b)(i)	$v^2 = u^2 + 2as$ height = 5.6 ² /(2×9.81)	C1
	= 1.6 m	A1
(b)(ii)	downward sloping straight line starting from a point on the speed axis and ending at point (T, 0)	B1

	Answer	Mark
(b)(iii)	$(\Delta)E = mg(\Delta)h$ = 0.45 × 9.81 × 1.6	C1
	= 7.1 J	A1
(b)(iv)	air resistance increases (and weight constant)	B1
	(resultant force decreases so) acceleration decreases	B1

136. 9702_s19_qp_22 Q: 2

	Answer	Mark
(a)	(resultant) force proportional/equal to/is rate of change of momentum	B1
(b)(i)	distance = area under graph or $s = \frac{1}{2}(u + v)t$ = $\frac{1}{2} \times (9 + 13) \times 10$	C1
	or	
	$s = ut + \frac{1}{2}at^{2}$ $= (9 \times 10) + (\frac{1}{2} \times 0.40 \times 10^{2})$ or	
	$s = vt - \frac{1}{2}at^{2}$ $= (13 \times 10) - (\frac{1}{2} \times 0.40 \times 10^{2})$	
	or	
	$v^2 = u^2 + 2as$ $13^2 = 9^2 + (2 \times 0.40 \times s)$	
	distance = 110 m	A1

	Answer	Mark
(b)(ii)	1. $a = \text{gradient or } a = (v - u)/t \text{ or } a = \Delta v/(\Delta)t$	C1
	e.g. a = (14 – 9)/12.5 or (13 – 9)/10	
	$a = 0.40 \text{ m s}^{-2}$	A1
	2. resultant force = 850 × 0.40 = 340 N	A1
	3. (F =) 510 + 440 + 340 = 1300 (N)	A1
	4. P = Fv	C1
	$= 1300 \times 13$ $= 1.7 \times 10^{4} \text{ W}$	A1
(c)	$E = \sigma l \varepsilon$	C1
	$E = (F/A)/(\Delta L/L)$ or $E = FL/A\Delta L$	C1
	$\Delta L = (480 \times 0.48) / (3.0 \times 10^{-4} \times 2.2 \times 10^{11})$	A1
	$= 3.5 \times 10^{-6} \mathrm{m}$	
(d)	$f_0 = f_s v / (v - v_s)$	C1
	$480 = f_s \times 340 / (340 - 14)$	
	f _s = 460 Hz	A1

137. 9702_w19_qp_21 Q: 3

	Answer	Mark
(a)	$\rho = m / V$	C1
	$V = \pi \times (0.16 / 2)^2 \times 7.6 \times 3.0 \ (= 0.458 \text{ m}^3)$	C1
	$m = \pi \times (0.16/2)^2 \times 7.6 \times 3.0 \times 1.2 = 0.55 \text{ kg}$	A1
(b)(i)	$\Delta p = 0.55 \times 7.6$	A1
	= 4.2 N s	
(b)(ii)	$F = 4.2/3.0 \text{ or } 0.55 \times 7.6/3.0$	A1
	= 1.4 N	
(c)(i)	F = 1.4 N	A1
(c)(ii)	Newton's third law (of motion)	B1
(d)	$2 \times 1.4 = m \times 9.81$	A1
	m = 0.29 kg	
(e)	the density of air is less at high altitude	B1
(f)	$f_0 = f_{\rm S} v / (v - v_{\rm S})$	C1
	= 3000 × 340 / (340 – 22)	
	= 3200 Hz	A1

138. 9702_s18_qp_22 Q: 3

	Answer	Mark
(a)	time = 12s	A1
(b)	distance (up slope) = ½ × 12 × 18 (= 108)	C1
	distance (down slope) = ½ × 12 × 6 (= 36)	C1
	displacement from A = 108 – 36 = 72m	A1
(c)	$v = u + at$ or $a = \text{gradient}$ or $a = \Delta v / (\Delta)t$	C1
	$a = 6 / 12 = 0.50 \text{ (m s}^{-2})$ (other points from the line may be used)	A1
	or	
	$v^2 = u^2 + 2as$ and $u = 0$ or $v^2 = 2as$	(C1)
•	$a = 6.0^2 / (2 \times 36) = 0.50 \text{ (ms}^{-2})$	(A1)
	$s = ut + 1/at^2 \text{ and } u = 0$ or $s = 1/at^2$	(C1)
	$a = 2 \times 36 / 12^2 = 0.50 \text{ (ms}^{-2}\text{)}$	(A1)
	or	
	$s = vt - \frac{1}{2}at^2$	(C1)
	$a = 2 \times (6 \times 12 - 36)/12^2 = 0.50 \text{ (ms}^{-2})$	(A1)

	Answer	Mark
(d)(i)	F = 70 × 0.50 (= 35)	C1
	frictional force = 80 – 35	A1
	= 45N	
(d)(ii)	$\sin \theta = 80/(70 \times 9.81)$	C1
	<i>θ</i> = 6.7°	A1
(e)(i)	$f_0 = (900 \times 340)/(340 + 12)$	C1
	= 870 Hz	A1
(e)(ii)	speed/velocity (of sledge) decreases and (so) frequency increases	B1

 $139.\ 9702_s18_qp_23\ Q:\ 2$

	Answer	Mark
(a)(i)	(work =) force × distance moved in the direction of the force	B1
(b)(i)	$\rho = m/V$	C1
	$= (20/9.81)/(4/3 \times \pi \times 0.16^{3})$	A1
	= 120 kg m ⁻³	
(b)(ii)	the pressure on the lower surface (of sphere) is greater than the pressure on the upper surface (of sphere)	B1
(b)(iii)	a = (170 - 20)/(20/9.81)	C1
	=74ms ⁻²	A1
(b)(iv)	D = 170 – 20 (= 150)	C1
	$810 \times (0.16^2) \times v^2 = 150$	C1
	v = 2.7 ms ⁻¹	A1
(b)(v)	$4870 = (4850 \times v)/(v - 6.30)$	C1
	v = 1530 ms ⁻¹	A1

140. 9702_m17_qp_22 Q: 4

	Answer	Mark
(a)	change in frequency when source moves relative to observer	M1
	refers to 'change in observed/apparent frequency'	A1
(b)(i)	$f = (950 \times 330)/(330 - 7.5)$	C1
4	= 970 (972) Hz	A1
(b)(ii)	frequency decreases	M1
	from greater than 950 Hz/from 970 (972) Hz/to less than 950 Hz/to 930 (929) Hz/by 40 (43) Hz	A1

 $141.\ 9702_s17_qp_21\ Q:\ 5$

	Answer	Mark	
(a)	observed frequency is different to source frequency when source moves relative to observer	B1	
(b)	$360 = (400 \times 340) / (340 \pm v)$	C1	
	$v = 38 (37.8) \mathrm{m s^{-1}}$	A1	
	away (from the observer)	B1	

$142.\ 9702_w17_qp_23\ Q:\ 4$

	Answer	Mark
(a)	displacement of particles/vibration(s)/oscillation(s) is parallel to/along the direction of energy/propagation	B1
(b)	period = 1 / 800 (= 1.25 × 10 ⁻³ s)	C1
	time-base setting = $1.25 \times 10^{-3}/2.5$	C1
	$= 5.0 \times 10^{-4} \mathrm{s cm^{-1}}$	A1
(c)(i)	$I \propto A^2$	C1
	$(I_X/I_Y =) [r_Y/r_X]^2 = [A_X/A_Y]^2$	C1
	ratio A _Y /A _X = 120/30	A1
	= 4.0	

	Answer	Mark
(c)(ii)	1. $v = f\lambda$	C1
	minimum $\lambda = 330 / (800 + 16) = 0.40 \text{ m}$	A1
	2. $f_0/f_s = v/(v-v_s)$	C1
	816 / 800 = 330 / (330 – v _s)	
	$v_{\rm s} = 6.5 {\rm m s^{-1}}$	A1

 $143.\ 9702_s16_qp_22\ Q:\ 4$

(a)	longitudinal: vibrations/oscillations (of the particles/wave) are parallel to the direction or in the same direction (of the propagation of energy)	B1	
	transverse: vibrations/oscillations (of the particles/wave) are perpendicular to the direction (of the propagation of energy)	B1	[2]
(b)	LHS: intensity = power/area units: $kg m s^{-2} \times m \times s^{-1} \times m^{-2}$ or $kg m^2 s^{-3} \times m^{-2}$	В1	
	RHS: units: $m s^{-1} \times kg m^{-3} \times s^{-2} \times m^2$	M1	
	LHS and RHS both kg s ⁻³	A1	[3]
(c)	(i) change/difference in the <u>observed/apparent</u> frequency when the source is moving (relative to the observer)	В1	[1]
	(ii) wavelength increases/frequency decreases/red shift	B1	[1]
(d)	observed frequency = $vf_S/(v-v_S)$	C1	
	$550 = (340 \times 510)/(340 - v_{\rm S})$	C1	
	$v_{\rm S} = 25 (24.7) \mathrm{ms^{-1}}$	A1	[3]

144. 9702 w16 qp 21 Q: 4

144. 97	02 _ $^{\text{w}}$	v16_qp_21 Q: 4		
(a)	of th	number of oscillations per unit time ne source/of a point on the wave/of a particle (in the medium)	M1 A1	[2]
		number of wavelengths/wavefronts per unit time sing a (fixed) point	(M1) (A1)	
(b)	T o	r period = $2.5 \times 250 \; (\mu s) \; (= 625 \; \mu s)$	M1	
	frec	puency = $1/(6.25 \times 10^{-4})$ or $1/(2.5 \times 250 \times 10^{-6})$ = 1600 Hz	A1	[2]
(c)	(i)	for maximum frequency: $f_o = f_s v / (v - v_s)$		
		$1640 = (1600 \times 330) / (330 - v_s)$	C1	
		$v_s = 8(.0) \mathrm{m s^{-1}} (8.049 \mathrm{m s^{-1}})$	A 1	[2]
	(ii)	loudspeaker moving towards observer causes rise in/high <u>er</u> frequency loudspeaker moving away from observer causes fall in/low <u>er</u> frequency or	B1 B1	[2]
		repeated rise and fall/higher and then lower frequency caused by loudspeaker moving towards and away from observer	(M1) (A1)	
145. 97	02 w	v16 qp 23 Q: 4		
	the of th	$v_16_{qp}_23~Q:4$ number of oscillations per unit time ne source/of a point on the wave/of a particle (in the medium)	M1 A1	[2]
	the of th or the	number of oscillations per unit time		[2]
(a)	the of the or the pas	number of oscillations per unit time ne source/of a point on the wave/of a particle (in the medium) number of wavelengths/wavefronts per unit time	A1 (M1)	[2]
(a)	the of the or the pas	number of oscillations per unit time ne source/of a point on the wave/of a particle (in the medium) number of wavelengths/wavefronts per unit time sing a (fixed) point	A1 (M1) (A1)	[2]
(a) (b)	the of the or the pas	number of oscillations per unit time ne source/of a point on the wave/of a particle (in the medium) number of wavelengths/wavefronts per unit time sing a (fixed) point $ r \text{ period} = 2.5 \times 250 \text{ (}\mu\text{s)} \text{ (}= 625 \mu\text{s)} $ $ r \text{ quency} = 1/(6.25 \times 10^{-4}) \text{ or } 1/(2.5 \times 250 \times 10^{-6}) = 1600 \text{ Hz} $ for maximum frequency: $ f_o = f_s v/(v-v_s) $	A1 (M1) (A1)	
(a) (b)	the of the or the pas	number of oscillations per unit time ne source/of a point on the wave/of a particle (in the medium) number of wavelengths/wavefronts per unit time sing a (fixed) point	A1 (M1) (A1)	
(a) (b)	the of the or the pas	number of oscillations per unit time ne source/of a point on the wave/of a particle (in the medium) number of wavelengths/wavefronts per unit time sing a (fixed) point $ r \text{ period} = 2.5 \times 250 \text{ (}\mu\text{s)} \text{ (}= 625 \mu\text{s)} $ $ r \text{ quency} = 1/(6.25 \times 10^{-4}) \text{ or } 1/(2.5 \times 250 \times 10^{-6}) = 1600 \text{ Hz} $ for maximum frequency: $ f_o = f_s v/(v-v_s) $	A1 (M1) (A1) M1 A1	
(a) (b)	the of the or the pas	number of oscillations per unit time ne source/of a point on the wave/of a particle (in the medium) number of wavelengths/wavefronts per unit time sing a (fixed) point $r \text{ period} = 2.5 \times 250 \text{ (}\mu\text{s) (= 625 }\mu\text{s)}$ $r \text{ puency} = 1/(6.25 \times 10^{-4}) \text{ or } 1/(2.5 \times 250 \times 10^{-6}) = 1600 \text{ Hz}$ for maximum frequency: $f_o = f_s v/(v - v_s)$ $1640 = (1600 \times 330) / (330 - v_s)$	A1 (M1) (A1) M1 A1	[2]

$146.\ 9702_w20_qp_23\ Q:\ 1$

	Answer	Mark
(a)(i)	wavelength = 8.5×10^{-5} m	A1
(a)(ii)	$f = v/\lambda$ or c/λ	C1
	$=3.0\times10^{8}/8.5\times10^{-5}$ (= 3.5×10^{12})	A1
	= 3.5 THz	
(a)(iii)	infrared	В1
(b)	(implied) percentage uncertainty in I = 4%	C1
	or (implied) fractional uncertainty in $I = 0.04$	
	percentage uncertainty in $E = 5\% + (4\% \times 2)$	A1
	= 13%	

$147.\ 9702_s20_qp_22\ Q{:}\ 4$

	Answer	Mark
	Allowel	_
(a)	progressive waves transfer energy	B1
	or stationary waves do not transfer energy	
(b)(i)	0.32 m	A1
(b)(ii)	$v = \lambda I T$	C1
	or	
	$v = f\lambda$ and $f = 1/T$	
	$v = 0.32/0.020$ or 50×0.32	A1
	= 16 m s ⁻¹	
(b)(iii)	450° or 90°	A1
(b)(iv)	(P has) maximum downward displacement at 0.005 s	B1
	returns to original position/point (at 0.010 s)	B1
(c)(i)	(position where) zero amplitude	B1
(c)(ii)	2	A1
(c)(iii)	180°	A1
(c)(iv)	string drawn between X and Y with one antinode midway along the string	B1

148. 9702_w20_qp_21 Q: 6

•	Answer	Mark
(a)	the waves (of the same type) move in opposite directions and overlap	В1
	the waves have the same (speed and) frequency/wavelength	В1
(b)(i)	zero amplitude	В1
(b)(ii)	distance = 6.0 × 4	A1
	= 24 cm	
(b)(iii)	180°	A1

149. 9702_m18_qp_22 Q: 4

	Answer	Mark
(a)	(two) waves (travelling at same speed) in opposite directions overlap	B1
	(waves are same type and) have same frequency / wavelength	B1
(b)(i)	$v = f\lambda$ $f = 330 / 0.18$	C1
	= 1800 Hz (1830 Hz)	A1
(b)(ii)	$T = 1/1800 \ (= 5.5 \times 10^{-4})$ time-base setting = $(1.5 \times 5.5 \times 10^{-4})/8.0 \ \text{or} \ 1/(1800 \times 5.3)$	C1
	$= 1.0 \times 10^{-4} \mathrm{s}\mathrm{cm}^{-1}$	A1
(b)(iii)	waveform drawn with same period as original waveform	B1
	waveform drawn with amplitude of 1.7 cm	B1
(c)(i)	distance = $\lambda/2 = 0.18/2$ = 0.090 m	A1

	Answer	Mark
(c)(ii)	letter N shown at level B and at level A and not anywhere else.	B1
(c)(iii)	$m = \rho Ax$ = 0.79 × 13 × 9.0 (=92.4) or 790 × 13×10 ⁻⁴ × 0.090 (=0.0924) t = 92.4/6.7 or 0.0924 / 0.0067	C1
	= 14 s	A1

$150.\ 9702_s18_qp_22\ Q\hbox{:}\ 4$

	Answer	Mark
(a)(i)	distance moved by wavefront/energy during one cycle/oscillation/period (of source) or minimum distance between two wavefronts or distance between two adjacent wavefronts	B1
(a)(ii)	(position where) maximum amplitude	B1
(b)(i)	$\lambda = 4 \times 0.045$ (= 0.18 (m) or 18 (cm))	C1
	$V = f\lambda$	C1
	f = 340/0.18 = 1900 Hz	A1
(b)(ii)	distance = λ/2 (= 0.09 (m) or 9 (cm))	C1
	time = 0.09 / 0.0075	A1
	= 12 s	
	or	
	t = 4.5/0.75 and t = 13.5/0.75	(C1)
	time = 18 – 6	(A1)
	= 12 s	

151. 9702_w18_qp_23 Q: 4

	Answer	Mark
(a)	graph with x-axis labelled 'distance' and wavelength/ λ correctly shown	B1
	graph with x-axis labelled 'time' and period/T correctly shown	B1
	graph with y-axis labelled 'displacement' and amplitude/A correctly shown	B1
(b)(i)	wave (moves along string and) reflects at fixed point/Y/X/end/wall/boundary	B1
	the incident and reflected waves interfere/superpose	B1
(b)(ii)	100/40 or 2.5 (cycles/periods/T)	C1
	1. displacement = 0	B1
	2. distance = 130 mm	A1
(b)(iii)	1. $f = 1/40 \times 10^{-3}$	A1
	= 25 Hz	
	2. $v = f\lambda$ or $\lambda = vT$	C1
	$\lambda = 30/25$ or $30 \times 40 \times 10^{-3}$ (= 1.2 m)	C1
	distance = 1.2 × 1.5	A1
	= 1.8m	

$152.\ 9702_s17_qp_21\ Q\hbox{:}\ 4$

	Answer	Mark
(a)	(two) waves travelling (at same speed) in opposite directions overlap	B1
	waves (are same type and) have same frequency/wavelength	B1
(b)(i)	λ = 12/250 (= 0.048 m)	C1
	distance = 1.5 × 0.048 = 0.072 m	A1
(b)(ii)	T = 1/250 = 0.004 (s) or 4 (ms)	C1
	1. curve drawn is mirror image of that in Fig. 4.2 and labelled P	A1
	2. horizontal line drawn between A and B and labelled Q	A1

153. $9702 w17 qp_21 Q: 3$

	Answer	Mark
(a)(i)	in a stationary wave energy is not transferred or in a progressive wave energy is transferred	B1
(a)(ii)	in a stationary wave (adjacent) particles are in phase or in a progressive wave (adjacent) particles are out of phase/have a phase difference/not in phase	B1
(b)(i)	(position where) maximum amplitude	B1
(b)(ii)	distance = 0.10 m	B1
(b)(iii)	1. $\lambda = 0.60/1.5$ = 0.40 m	A1
	$2. v = f\lambda$	C1
	f = 340/0.40 = 850 Hz	A1
(b)(iv)	$\lambda = 2 \times 0.60 \text{ or } \lambda = 3 \times 0.40 \text{ or } f = 850/3$	C1
	f = 280 (283) Hz	A1

 $154.\ 9702_w17_qp_22\ Q:\ 4$

	Answer	Mark
(a)	(two) waves travelling (at same speed) in opposite directions overlap	B1
	waves (are same type and) have same frequency/wavelength	B1
(b)(i)	5	A1
(b)(ii)	$T = 1/40 \ (= 2.5 \times 10^{-2})$	C1
	time taken = $2.5 \times 10^{-2}/2$ = 1.3×10^{-2} s (1.25 × 10 ⁻² s)	A1
b)(iii)	180°	A1
(b)(iv)	v = fλ	C1
	$\lambda = 2.0/2.5 (= 0.80 \mathrm{m})$	A1
	$v = 0.80 \times 40$	
	$= 32 \mathrm{ms}^{-1}$	

155. 9702 s16 qp 23 Q: 7

11 (10.7) GHz

155. 97	$^{02}_{-}{}^{s}$	16_qp_23 Q: 7		
(a)	(i)	alter distance from vibrator to pulley alter frequency of generator (change tension in string by) changing value of the masses		
		any two	B2	[2]
	(ii)	points on string have <u>amplitudes</u> varying from maximum to zero/minimum	B1	[1]
(b)	(i)	60° or $\pi/3$ rad	A1	[1]
	(ii)	ratio = $[3.4/2.2]^2$	C1	
		= 2.4 (2.39)	A1	[2]
156. 97	02_s	15_qp_22 Q: 6	3	
(a)	pro	gressive waves transfer/propagate energy and stationary waves do not	B1	
		plitude constant for progressive wave and varies (from max/antinode to //zero/node) for stationary wave	B1	
	adja wa	acent particles in phase for stationary wave and out of phase for progressive ve	(B1)	[2]
(b)	(i)	wave/microwave from source/S reflects at reflector/R	B1	
		reflected and (further) incident waves overlap/meet/superpose	B1	
		waves have same <u>frequency/wavelength/period</u> and <u>speed</u> (so stationary waves formed)	B1	[3]
	(ii)	detector/D is moved between reflector/R and source/S (or v.v.)	B1	
		maximum, minimum/zero, (maximum etc.) observed on meter/deflections/readings/measurements/recordings	В1	[2]
	(iii)	determine/measure the distance between adjacent minima/nodes or maxima/antinodes or across specific number of nodes/antinodes	В1	
		wavelength is twice distance between <u>adjacent</u> nodes/minima or maxima/ antinodes (or other correct method of calculation of wavelength from measurement)	В1	[2]
(c)	v =	$f\lambda$	C1	
	f =	$3.0 \times 10^8 / (2.8 \times 10^{-2}) $ [= $1.07 \times 10^{10} $ Hz]	C1	

A1 [3]

Α1

Α1

В1

[2]

[1]

 $157.\ 9702_w15_qp_21\ \ Q:\ 5$

(a)		gressive: all particles have same amplitude ionary: no nodes or antinodes or maximum to minimum/zero amplitude	В1	
		gressive: adjacent particles are not in phase ionary: waves particles are in phase (between adjacent nodes)	B1	[2]
(b)	(i)	wavelength 1.2 m (zero displacement at 0.0, 0.60 m, 1.2 m, 1.8 m, 2.4 m)		
		either peaks at 0.30 m and 1.5 m and troughs at 0.90 m and 2.1 m or vice versa (but not both)	В1	
		maximum amplitude 5.0 mm	B1	[2]
	(ii)	180° or π rad	A1	[1]
	(iii)	at $t = 0$ particle has kinetic energy as particle is moving	B1	
		at $t=5.0\mathrm{ms}$ no kinetic energy as particle is stationary so decrease in kinetic energy (between $t=0$ and $t=5.0\mathrm{ms}$)	B1	[2]
158. 97	02_w	v15_qp_23 Q: 6		
(a)	wav	ves from loudspeaker (travel down tube and) are reflected at closed end	B1	
		waves (travelling) in opposite directions with same frequency/wavelengtherlap	B1	[2]

159. 9702_s20_qp_21 Q: 4

(b) (i) 0.51 m

 $0.85 \, \text{m}$

(by eye)

	Answer	Mark
(a)(i)	vibrations (of particles) are parallel to direction of energy propagation	B1
(a)(ii)	waves meet/overlap (at a point)	B1
	(resultant) displacement is sum of individual displacements	B1
(b)(i)	$\lambda = ax/D$	C1
	$= (3.7 \times 10^{-4} \times 4.3 \times 10^{-3})/2.3$	C1
	$=6.9\times10^{-7}(\text{m})$	A1
	= 690 nm	
(b)(ii)	 no change to fringe separation/fringe width/number of fringes bright fringes are darker dark fringes are brighter 	B2
	Any two marking points, 1 mark each	

(ii) A at open end, N at closed end, with an N and A in between, equally spaced

160. 9702_s20_qp_23 Q: 4

	Answer	Mark
(a)(i)	frequency or period	B1
(a)(ii)	amplitude	B1
(b)	constant phase difference so coherent	B1
(c)	120°	B1
(d)	resultant displacement = 4.0 μm – 1.0 μm	B1
	= 3.0 μm	
(e)	$I \sim A^2$	C1
	intensity of $Z = (2^2/4^2) I$	A1
	= 0.25 <i>I</i>	
(f)	$v = \lambda/T$ or $v = f\lambda$ and $f = 1/T$	C1
	$330 = \lambda / 3.0 \times 10^{-3}$	C1
	$\lambda = 0.99 \mathrm{m}$	A1

 $161.\ 9702_w20_qp_22\ \ Q:\ 5$

	Answer	Mark
(a)	$v = f\lambda$ or $c = f\lambda$	C1
	$f = 3.0 \times 10^8 / 0.040$	C1
	= 7.5 × 10 ⁹ (Hz)	A1
	= 7.5 GHz	
(b)(i)	path difference = 0.020 m	A1
(b)(ii)	phase difference = 180°	A1
(c)	(intensity) increases	C1
	(intensity) increases by a factor of 4	A1
(d)(i)	minimum moves closer to the maximum	B1
	decrease in separation of maximum and minimum	
(d)(ii)	the maximum and minimum exchange places	B1
	or the maximum becomes a minimum and the minimum becomes a maximum	

162. 9702_m19_qp_22 Q: 5

	Answer	Mark
(a)(i)	(two) waves meet/overlap (at a point)	B1
	(resultant) displacement is sum of the displacement of each wave	B1
(a)(ii)	constant phase difference (between the waves)	B1
(b)	I ∝ A ²	C1
	$3I/I = (A + 1.5)^2/1.5^2$	
	A = 1.1 cm	A1
(c)(i)	$\lambda = ax/D$	C1
	e.g. $a = 680 \times 10^{-9} \times 2.0 / 4.0 \times 10^{-3}$	C1
	a = 3.4 × 10 ⁻⁴ m	A1
(c)(ii)	straight line from positive value on x-axis and always below 'old' line	B1
	straight line with a smaller positive gradient than 'old' line	B1

$163.\ 9702_s19_qp_21\ Q{:}\ 5$

	Answer	Mark
(a)(i)	1. N2	B1
	2. N/f	B1
(a)(ii)	v (= distance/time) = $N\lambda/(N/f)$ so $v = f\lambda$	B1
(b)	$T = 4.0 \times 0.20 = 0.80 \text{ (ms)}$ or $8.0 \times 10^{-4} \text{ (s)}$	C1
	$f = 1/8.0 \times 10^{-4}$	A1
	= 1300 Hz	
(c)(i)	constant phase difference (between the waves)	B1
(c)(ii)	180°	A1
(c)(iii)	path difference = 2λ or $S_1Y - S_2Y = 2\lambda$	C1
	distance = 7.40 + (0.85 × 2)	A1
	= 9.1 m	

164. 9702_w19_qp_21 Q: 5

	Answer	Mark
(a)(i)	the dippers are connected to the same vibrator/motor	B1
(a)(ii)	(the overlapping waves have) similar/same amplitude	B1
(b)	any means of 'freezing' the pattern e.g. use a stroboscope/strobe	B1
(c)	$vT = \lambda$ or $v = f\lambda$ and $f = 1/T$	C1
	T = 0.060 / 0.40	A1
	= 0.15 s	
(d)(i)	path difference = 3.0 cm	A1
(d)(ii)	phase difference = 180°	A1
(e)	line drawn joining points where only maxima are observed (i.e. through points where wavefronts intersect) of length at least 4 cm	B1

 $165.\ 9702_s18_qp_21\ Q\hbox{:}\ 4$

	Answer	Mark
(a)(i)	time for one oscillation/one vibration/one cycle	B1
	or time between adjacent wavefronts/points in phase	
	or shortest time between two wavefronts/points in phase	
(a)(ii)	distance moved by wavefront/energy during one cycle/oscillation/period (of source)	B1
	or minimum distance between two wavefronts	
	or	
	distance between two adjacent wavefronts or	
	minimum distance between two points having the same displacement and moving in the same direction	
(b)(i)	$v = \lambda/T$ or $v = f\lambda$ and $f = 1/T$	C1
	$\lambda = 20 \times 0.60$	A1
	= 12 cm	
(b)(ii)	phase difference = 360° × (0.20/0.60) or 360° × (0.40/0.60)	A
	= 120° or 240°	
(b)(iii)	$I \propto A^2$	C1
	$I_{\mathcal{Q}}/I_{\mathcal{P}} = A_{\mathcal{Q}}^2/A_{\mathcal{P}}^2$	A1
	$=2.0^2/3.0^2$	
	= 0.44	
(b)(iv)	displacement = 1.00 - 3.00	A1
	= -2.00 mm	

 $166.\ 9702_s18_qp_23\ Q\hbox{:}\ 5$

	Answer	Mark
(a)	intensity ∞ (amplitude)²	B1
(b)(i)	$v=f\lambda$ or $c=f\lambda$	C1
	$f = 3.00 \times 10^8 / 0.060$	A1
	$=5.0 \times 10^9 \text{Hz}$	
(b)(ii)	(at X path) difference = 3λ	M1
	(at X phase) difference = 0 or 1080°	M1
	so intensity is at a maximum/it is an intensity maximum	A1
(b)(iii)	1. decrease in the distance between (adjacent intensity) maxima/minima	B1
	2. (intensity) maxima and minima exchange places	B1

167. 9702_w18_qp_21 Q: 4

	Answer	Mark
(a)	when (two or more) waves meet (at a point)	B1
	(resultant) displacement is the sum of the individual displacements	B1
(b)(i)	constant phase difference (between the waves)	B1
(b)(ii)	1. phase difference = 360° or 0	B1
	2. path difference = 1.5λ	A1
	= 1.5 × 610	
	= 920 nm	
(b)(iii)	$\lambda = ax/D$	C1
	$x = 22/4 = 5.5 \text{ mm}$ or $22 \times 10^{-3}/4 = 5.5 \times 10^{-3} \text{ m}$	C1
	$a = (610 \times 10^{-9} \times 2.7)/(5.5 \times 10^{-3})$	A1
	$=3.0\times10^{-4}$ m	
(b)(iv)	shorter wavelength and (so) separation decreases	B1
(b)(v)	no change to fringe separation/fringe width/number of fringes bright fringes are brighter dark fringes are unchanged	В2
	Any two of the above three points, 1 mark each.	

168. 9702_s17_qp_22 Q: 6

	Answer	Mark
(a)(i)	waves at (each) slit/aperture spread	B1
	(into the geometric shadow) <u>wave(s)</u> overlap/superpose/sum/meet/intersect	B1
(a)(ii)	there is not a constant phase difference/coherence (for two separate light source(s)) or waves/light from the double slit are coherent/have a constant phase difference	В1
(b)	$x = \lambda D/a$	C1
	$\lambda = (36 \times 10^{-3} \times 0.48 \times 10^{-3}) / (16 \times 2.4)$	C1
	$= 4.5 \times 10^{-7} \mathrm{m}$	A1
(c)(i)	no movement of the water/water is flat/no ripples/disturbance	B1
	the path difference is 2.5λ or the phase difference is 900° or 5π rad	B1
(c)(ii)	surface/water/P vibrates/ripples and as (waves from the two dippers) arrive in phase	В1
•	surface/water/P vibrates/ripples and as amplitudes/displacements are no longer equal/do not cancel	B1

 $169.\ 9702_m16_qp_22\ Q:\ 4$

(a)	(i)	Displacement of particles perpendicular to direction of energy propagation	B1
	(ii)	waves meet/overlap (at a point) (resultant) displacement is sum of the individual displacements	B1 B1
(b)	(i)	$\lambda = vT$ or $\lambda = v/f$ and $f = 1/T$ $\lambda = 4.0 \times 1.5$	C1
		$\lambda = 6.0 (\text{cm})$	A1
	(ii)	path difference [= $(44 \mathrm{cm} - 29 \mathrm{cm})/6 \mathrm{cm}$] = 2.5λ	M1
		either waves have path difference = $(n + \frac{1}{2})\lambda$ or waves have phase difference = 180°	M1
		so destructive interference	A1
(c)	(i)	intensity ∞ (amplitude) ² ratio = $(0.60^2/0.90^2) = 0.44$	C1 A1
	(ii)	phase difference = 90°	A1
170. 97	02_s	16_qp_21 Q: 5	
(a)	T =	$4 \text{ (ms) or } 4 \times 10^{-3} \text{ (s)}$	
	f =	= 1/ <i>T</i> = 1/0.004	
	=	= 250 Hz A1	[2]
(b)	inte	ensity ∞ (amplitude) ² and amplitude = 2.8 (2.83)(cm)	
	cur	ve with same period and with amplitude 2.8 cm	
	cur	ve shifted 1.0 ms to left or to right of wave X B1	[3]

171. 9702 w16 qp 22 Q: 4

(a) wave incident on/passes by or through an aperture/edge	B1	
wave spreads (into geometrical shadow)	B1 [2	2]

path difference (from slits to X) is zero/
phase difference (between the two waves) is zero
(so constructive interference gives bright fringe)

B1 [2]

(ii) difference in distances =
$$\lambda/2 = 580/2$$

= 290 nm A1 [1]

(iii)
$$\lambda = ax/D$$

$$D = [0.41 \times 10^{-3} \times (2 \times 2.0 \times 10^{-3})]/580 \times 10^{-9}$$

$$= 2.8 \,\text{m}$$
C1
A1 [3]

(iv) same separation/fringe width/number of fringes bright fringe(s)/central bright fringe/(fringe at) X less bright dark fringe(s)/(fringe at) Y/(fringe at) Z brighter contrast between fringes decreases

Any two of the above four points, 1 mark each B2 [2]

172. 9702_s15_qp_23 Q: 6

interference is the (overlapping of waves and the) sum of/addition of displacement of two waves B1 [2]

(ii) wavelength =
$$3.2 \text{ m}$$
 (allow $\pm 0.05 \text{ m}$) M1

$$f = v/\lambda = 240/3.2 = 75 \text{ Hz}$$
 A1 [2]

(iii)
$$90^{\circ}$$
 (allow $\pm 2^{\circ}$) or $\pi/2$ rad A1 [1]

(iv) sketch has amplitude
$$3.0 \pm 0.1 \,\mathrm{cm}$$

correct displacement values at previous peaks to produce correct shape A1 [2]

(b) (i)
$$\lambda = ax/D$$

$$x = (546 \times 10^{-9} \times 0.85) / 0.13 \times 10^{-3} (= 3.57 \times 10^{-3} \text{ m})$$

AB =
$$8.9 (8.93) \times 10^{-3} \text{m}$$
 A1 [3]

(ii) shorter wavelength for blue light so separation is less B1 [1]

173. 9702 w15 qp 22 Q: 7 (a) (i) 3.2 mm Α1 [1] (ii) 20 mm Α1 [1] **(b) (i)** energy is transferred/propagated (through the water) or wave profile/wavefronts move (outwards from dipper) so progressive В1 [1] (ii) to produce waves with constant/zero phase difference/coherent waves В1 [1] (c) (i) path difference is λ **B**1 water vibrates/oscillates with amplitude about 2 × 3.2 mm В1 [2] (ii) path difference is $\lambda/2$ so little/no motion/displacement/amplitude [1] 174. 9702 w15 qp 23 Q: 2 (a) (i) (the loudspeakers) are connected to the same signal generator В1 [1] (ii) 1. the waves (that overlap) have phase difference of zero or path difference of zero and so either constructive interference displacement larger В1 [1] the waves (that overlap) have phase difference of $(n + \frac{1}{2}) \times 360^{\circ}$ or $(n + \frac{1}{2}) \times 2\pi$ rad or path difference of $(n + \frac{1}{2})\lambda$ and so either destructive interference displacements cancel/smaller В1 [1] the waves (that overlap) are in phase or have phase difference of n360° or $2\pi n$ rad or path difference of $n\lambda$ and so either constructive interference displacement larger В1 [1] (b) time period = 0.002 s or 2 msC1 wave drawn is half time period В1 amplitude 1.0 cm (same as Fig. 2.2) В1 [3]

175. 9702_m20_qp_22 Q: 4

	Answer	Mark
(a)(i)	distance moved by wavefront / energy during one cycle / vibration / oscillation / period (of source) or minimum distance between two wavefronts or	B1
(a)(ii)	distance between two <u>adjacent</u> wavefronts maximum displacement (of particle / point on wave)	B1
(b)(i)	1 light/waves spread (at each slit)	B1
	2 constant phase difference (between light / waves)	B1
(b)(ii)	$n\lambda = d\sin\theta$	C1
	$d = 3 \times 650 \times 10^{-9} / \sin 34^{\circ}$	C1
	$d = 3.5 \times 10^{-6} \mathrm{m}$	A1
(b)(iii)	wavelength of blue light is shorter (than 650 nm / red light)	M1
	so angle (between third order diffraction maxima) decreases	A1

 $176.\ 9702_w20_qp_23\ Q\hbox{:}\ 5$

	Answer	Mark
(a)(i)	$T = 2.0 \times 10^{-5} \times 6.0 \ (= 1.2 \times 10^{-4} \text{s})$	C1
	$f = 1/(2.0 \times 10^{-5} \times 6.0)$	A1
	= 8300 Hz	
(a)(ii)	new trace shows the same period	B1
	new trace shows amplitude of 10 small squares	B1
(a)(iii)	(trace is a) vertical line	B1
(b)(i)	$n\lambda = d\sin\theta$	C1
	$\lambda = (3.4 \times 10^{-6} \times \sin 16^{\circ})/2$	A1
	$=4.7\times10^{-7}\mathrm{m}$	
(b)(ii)	$n = 3.4 \times 10^{-6} (\times \sin 90^{\circ}) / 4.7 \times 10^{-7}$ or $2 (\times \sin 90^{\circ}) / \sin 16^{\circ}$	C1
	(= 7.2 or 7.3)	
	highest order = 7	A1

$177.\ 9702_s19_qp_22\ Q:\ 4$

	Answer	Mark
(a)(i)	distance (in a specified direction of particle/point on wave) from the equilibrium position	B1
(a)(ii)	the maximum distance (of particle/point on wave) from the equilibrium position	B1
	or	
	the maximum displacement (of particle/point on wave)	
(b)	$I \propto A^2$	C1
	$I_R/I = (3.6 - 1.2)^2/(1.2)^2$	A1
	resultant intensity = 4.0 <i>I</i>	
(c)(i)	as wave(s) pass through the slit(s)	B1
	wave(s) spread (into geometric shadow)	B1
(c)(ii)	$n\lambda = d \sin \theta$	C1
	$3\lambda = d \sin 90^{\circ} \text{ or } 3\lambda = d$	C1
	$d = 3 \times 630 \times 10^{-9}$	A1
	= 1.9 × 10 ⁻⁶ m	
(c)(iii)	wavelength of blue light is shorter (than 540 nm/630 nm/wavelengths of original light)	M1
ı	(so) third order diffraction maximum is produced	A1

$178.\ 9702_w19_qp_23\ Q\hbox{:}\ 5$

	Answer	Mark
(a)(i)	(coherence means) constant phase difference (between waves)	B1
(a)(ii)	(interference is) the sum/addition/combination of the displacements of overlapping/meeting waves	B1
(b)(i)	$n\lambda = d\sin\theta$	C1
	$\lambda = \sin 51^{\circ} / (2 \times 6.7 \times 10^{5})$ $= 5.8 \times 10^{-7} \text{ m}$	A 1
(b)(ii)	smaller angle (corresponding to second order maxima and so) shorter distance (between second order maxima spots)	B1

179. 9702_s18_qp_21 Q: 5

	Answer	Mark
(a)(i)	waves spread at (each) slit/gap	B1
(a)(ii)	constant phase difference (between (each of) the waves)	B1
(b)(i)	$n\lambda = d\sin\theta$	B1
	$d\sin\theta$ is the same and $3\lambda_1 = 4\lambda_2$ so $\lambda_2/\lambda_1 = 0.75$	A1
(b)(ii)	$\lambda_2/\lambda_1 = 0.75$ and $\lambda_1 - \lambda_2 = 170$	A1
	$\lambda_1 = 680 \mathrm{nm}$	

180. 9702_w18_qp_22 Q: 5

	Answer	Mark
(a)	$n\lambda = d\sin\theta$	C1
	$\lambda = 640 \times 10^{-9} \text{ (m)}$	C1
	$2 \times 640 \times 10^{-9} = 1.7 \times 10^{-6} \times \sin\theta$ so $\theta = 49(^{\circ})$	A1
(b)	$2 \times 640 \times 10^{-9} = 3 \times \lambda$ or $1.7 \times 10^{-6} \times \sin 49^{\circ} = 3 \times \lambda$	C1
	$\lambda = 4.3 \times 10^{-7} \mathrm{m}$	A1

 $181.\ 9702_s17_qp_23\ Q:\ 5$

	Answer	Mark
(a)(i)	waves at the elements/slits	B1
	waves spread (into the geometric shadow)	B1
(a)(ii)	1. waves (from each element/slit) overlap/meet/superpose	B1
	with a phase difference/path difference of zero	B1
	2. phase difference is 360°/path difference of λ	B1
(b)(i)	e.g. gradient = (0.40 – 0.32)/[(500 – 400) × 10 ⁻⁹]	C1
	= 8(.0) × 10 ⁵	A1
(b)(ii)	$d\sin\theta = n\lambda$	C1
	d = n/gradient	
	$= 2/8.0 \times 10^5 = 2.5 \times 10^{-6} \text{ m}$	A1
(b)(iii)	straight line drawn with lower gradient (about ½) and all points lower	B1

182. 9702_s16_qp_22 Q: 5

(a)	element/gap/aperture	В1	
	interference: overlapping of waves (from coherent sources at each element)	B1	
	path difference λ/phase difference of 360(°)/2 π (produces the first order)	B1	[3]
(b)	$d\sin\theta = n\lambda$ or $\sin\theta = Nn\lambda$	C1	
	$d = (2 \times 486 \times 10^{-9}) / \sin 29.7^{\circ} (= 1.962 \times 10^{-6})$	C1	
	number of lines = $510 (509.7) \text{ mm}^{-1}$	A1	[3]

[2]

- (a) wave incident on/passes by or through an aperture/edge **B**1 wave spreads (into geometrical shadow) **B1** [2]
- (b) $n\lambda = d \sin \theta$ C1

substitution of θ = 90° or $\sin \theta$ = 1 C₁

 $4 \times 500 \times 10^{-9} = d \times \sin 90^{\circ}$

line spacing = 2.0×10^{-6} m Α1 [3]

(c) wavelength of red light is longer (than 500 nm) M1

(each order/fourth order is now at a greater angle so) the fifth-order maximum cannot be formed/not formed

184. 9702 w16 qp 23 Q: 5

- Cambril (a) wave incident on/passes by or through an aperture/edge **B**1 wave spreads (into geometrical shadow) **B**1 [2]
- **(b)** $n\lambda = d \sin \theta$ C₁

substitution of θ = 90° or $\sin \theta$ = 1 C₁

 $4 \times 500 \times 10^{-9} = d \times \sin 90^{\circ}$

line spacing = 2.0×10^{-6} m Α1 [3]

(c) wavelength of red light is longer (than 500 nm) M1

(each order/fourth order is now at a greater angle so) the fifth-order maximum cannot be formed/not formed Α1 [2]

185. 9702_s15_qp_21 Q: 6

(a)	diffraction is the spreading of a wave as it passes through a slit or past an edge	B1	
	when two (or more) waves superpose/meet/overlap resultant displacement is the sum of the displacement of each wave	M1 A1	[3]
(b)	$n\lambda = d \sin \theta$ and $v = f\lambda$	C1	
	max order number for $\theta = 90^{\circ}$ hence $n = (f/vN) = 7.06 \times 10^{14}/(3 \times 10^8 \times 650 \times 10^3)$	M1	
	n = 3.6 hence number of orders = 3	A1	[3]

(c) greater wavelength so fewer orders seen

A1 [1]

 $186.\ 9702_m17_qp_22\ Q\hbox{:}\ 5$

	Answer	Mark
(a)	to the right/from the left/from A to B/in the same direction as electron velocity	B1
(b)	$v^{2} = u^{2} + 2as$ $a = (1.5 \times 10^{7})^{2} / (2 \times 2.0 \times 10^{-2})$ Other alternative calculations for the C1 mark: e.g. $a = 1.5 \times 10^{7} / 2.67 \times 10^{-9}$ e.g. $a = [(1.5 \times 10^{7} \times 2.67 \times 10^{-9}) - 2.0 \times 10^{-2}] \times [2/(2.67 \times 10^{-9})^{2}]$ e.g. $a = (2.0 \times 10^{-2} \times 2)/(2.67 \times 10^{-9})^{2}$	C1
	$= 5.6 \times 10^{15} \text{ms}^{-2}$	A1
(c)	E = F/Q	C1
	$= (9.1 \times 10^{-31} \times 5.6 \times 10^{15}) / 1.6 \times 10^{-19}$	C1
	$= 3.2 \times 10^4 \mathrm{V} \mathrm{m}^{-1}$	A1
(d)	straight line with negative gradient starting at an intercept on the <i>v</i> -axis and ending at an intercept on the <i>t</i> -axis.	B1

187. 9702_s17_qp_23 Q: 3

	Answer	Mark		
(a)	force per unit (positive) charge	B1		
(b)(i)	$a = (v^2 - u^2)/2s$			
	$= [(18 \times 10^{6})^{2} - (2.5 \times 10^{3})^{2}] / (2 \times 12 \times 10^{-3})$			
	= 1.3 (1.35) \times 10 ¹⁶ m s ⁻²	A1		
(b)(ii)	$KE = \frac{1}{2}mv^2 \text{ or } \frac{1}{2}m(v^2 - u^2)$	C1		
	change in KE = $0.5 \times 9.11 \times 10^{-31} \times [(18 \times 10^6)^2 - (2.5 \times 10^3)^2]$	B1		
	$= 1.5 (1.48) \times 10^{-16} J$	A1		
(b)(iii)	$E = F/e = ma/e$ or $eV = \Delta KE$ so $E = \Delta KE/(e \times d)$	C1		
	$E = (9.11 \times 10^{-31} \times 1.35 \times 10^{16}) / 1.60 \times 10^{-19}$	C1		
	or $E = (1.48 \times 10^{-16})/(12 \times 10^{-3} \times 1.60 \times 10^{-19})$			
	$= 7.7 (7.69) \times 10^4 \text{ V m}^{-1}$	A1		
(c)	charge on α opposite to electron/charge on α is positive	B1		
	ΔKE is negative/KE reduced	B1		
	charge of α greater/twice that of electron causes larger/twice Δ KE (in magnitude)	B1		

$188.\ 9702_m19_qp_22\ \ Q:\ 4$

	Answer	Mark
(a)	force per unit positive charge	B1
(b)(i)	1 $E = V/d \text{ or } E = \Delta V/\Delta d$ $d = 4.0 \times 10^3 / 5.0 \times 10^4$	C1
	= 8.0 × 10 ⁻² m	A1
	2 plates are (in) horizontal (plane) (above and below the rod)	B1
	top (plate) negative and bottom (plate) positive	B1
(b)(ii)	magnitude = $5.0 \times 10^4 \times 3 \times 1.6 \times 10^{-19}$ = 2.4×10^{-14} N	A1
	direction is (vertically) downwards / down	B1

			Answer	Mark
(b)(iii)	6.2 × 10 ⁻¹⁶ = 2.4 ×	× 10 ⁻¹⁴ × 72 ×	10 -³ × cos θ	C1
	θ = 69°			A1

189. 9702_s19_qp_21 Q: 4

	Answer	Mark
(a)(i)	$m = \rho \times V$	C1
	= $(4/3) \times \pi \times (1.2 \times 10^{-6})^3 \times 940 = 6.8 \times 10^{-15} \text{ (kg)}$	A1
(a)(ii)	minimum charge (on drop) is 1.6×10^{-19} C	B1
(b)(i)	V = Ed	C1
	$V = 2.1 \times 10^5 \times 8.0 \times 10^{-3}$	A1
	$= 1.7 \times 10^3 \text{ V}$	
(b)(ii)	constant velocity so no resultant force (so in equilibrium)	B1
(b)(iii)	mg = Eq or mg = (V/d)q	C1
	or	
	F = mg and $F = Eq$	
	$q = (6.8 \times 10^{-15} \times 9.81)/2.1 \times 10^5$	A1
	$= 3.2 \times 10^{-19} \mathrm{C}$	
	sign of charge is negative	A1
(c)(i)	electric force decreases	B1
	weight > electric force or resultant force acts downwards	B1
(c)(ii)	(field line) separation increases	B1
(d)(i)	upthrust (force)	B1
(d)(ii)	air resistance/drag/viscous (force)	B1

 $190.\ 9702_s19_qp_23\ Q:\ 4$

	Answer	Mark
(a)	straight (horizontal) lines and from the +0.90 kV plate/to the 0 V plate	B1
	(lines are) equally spaced	B1
(b)	weight/gravitational force and electric force	B1
(c)	$s = \frac{1}{2}at^2$ or $s = ut + \frac{1}{2}at^2$ and $u = 0$	C1
	$2.0 = \frac{1}{2} \times 9.81 \times t^2$ so $t = 0.64$ s	A1
(d)	$0.080 = \frac{1}{2} \times a \times 0.64^{2}$	C1
	a = 0.39 m s ⁻²	A1
(e)(i)	$E = (\Delta)V/(\Delta)d$	C1
	$E = 0.90 \times 10^{3} / 0.12$ $= 7.5 \times 10^{3} \text{ N C}^{-1}$	A1
(e)(ii)	ma = Eq or F = ma and F = Eq	C1
	$q/m = 0.39/7.5 \times 10^3$	A1
	= $5.2 \times 10^{-5} \text{ C kg}^{-1}$	
(f)(i)	no effect	B1
(f)(ii)	decreases/smaller	B1

191. 9702_w19_qp_21 Q: 2

	Answer	Mark
(a)	the (two) plates are <u>vertical</u> (and separated)	B1
	left plate positively charged and right plate negatively charged/earthed or right plate negatively charged and left plate positively charged/earthed	В1
(b)	F = Eq	C1
	$= 1.3 \times 10^{4} \times 3.7 \times 10^{-9}$ $= 4.8 \times 10^{-5} \text{ N}$	A1
(c)	$F^2 = (4.8 \times 10^{-5})^2 + (5.4 \times 10^{-5})^2$ so $F = 7.2 \times 10^{-5}$ N or $F = [(4.8 \times 10^{-5})^2 + (5.4 \times 10^{-5})^2]^{0.5}$ so $F = 7.2 \times 10^{-5}$ N	A1
(d)	electric force is constant (because field strength/E is constant)	B1
	weight is constant (and so resultant force constant)	B1
(e)(i)	$m = 5.4 \times 10^{-5} / 9.81 \ (= 5.5 \times 10^{-6})$	C1
	$a = 7.2 \times 10^{-5} / (5.5 \times 10^{-6})$ $= 13 \text{ m s}^{-2}$	A1
(e)(ii)	$v^2 = u^2 + 2as$	C1
	$v^2 = 2 \times 13 \times 0.58$	
	$v = 3.9 \text{ m s}^{-1}$	A1

$192.\ 9702_w19_qp_23\ Q:\ 3$

	Answer	Mark
(a)(i)	mass	B1
(a)(ii)	charge	B1
(b)(i)	E=V/d or E=F/q	C1
	$F = (1.2 \times 10^3 \times 4.2 \times 10^{-9})/3.6 \times 10^{-2}$	C1
	= 1.4 × 10 ⁻⁴ N	A1
(b)(ii)	W = mg	C1
	= 5.9 × 10 ⁻⁶ × 9.81	C1
	resultant force = $1.4 \times 10^{-4} - (5.9 \times 10^{-6} \times 9.81)$	
	a = F/m	C1
	$a = [1.4 \times 10^{-4} - (5.9 \times 10^{-6} \times 9.81)] / [5.9 \times 10^{-6}] = 14 \text{ m s}^{-2}$	A1
(b)(iii)	1. $s = ut + \frac{1}{2}at^2$	C1
	$1.8 \times 10^{-2} = \frac{1}{2} \times 14 \times t^2$	
	t = 0.051s	A1
	2. p = 0.75 × 0.051	A1
	= 0.038 m	

193. 9702_w17_qp_21 Q: 6

	Answer	Mark
(a)	force per unit positive charge	B1
(b)(i)	$E_{\rm K} = \frac{1}{2}mv^2$	C1
	$2.4 \times 10^{-16} = \frac{1}{2} \times 1.7 \times 10^{-27} \times v^2$	A1
	$v = 5.3 \times 10^5 \text{ms}^{-1}$	
(b)(ii)	work done = $2.4 \times 10^{-16} \text{ J}$	A1
(b)(iii)	W = Fs	C1
	$F = 2.4 \times 10^{-16} / 15 \times 10^{-3}$	A1
	$= 1.6 \times 10^{-14} \mathrm{N}$	
(b)(iv)	V=Fd/Q	C1
	or V = W/Q	
	or	
	E = V/d and $E = F/Q$	
	$V = (1.6 \times 10^{-14} \times 15 \times 10^{-3})/1.6 \times 10^{-19} \text{ or } 2.4 \times 10^{-16}/1.6 \times 10^{-19}$	C1
	= 1500 V	A1
(b)(v)	straight line with positive gradient starting at the origin and going as far as $x = 15 \mathrm{mm}$	B1

194. $9702_{1} - 17_{1} - 17_{2} = 23$ Q: 5

	Answer	Mark
(a)	force per unit positive charge	B1
(b)(i)	$s = \frac{1}{2}at^2$	C1
	$a = (2 \times 0.045) / (1.5 \times 10^{-7})^2 = 4(.0) \times 10^{12} \mathrm{m s}^{-2}$	A1
(b)(ii)	$F = 1.67 \times 10^{-27} \times 4.0 \times 10^{12} = 6.7 (6.68) \times 10^{-15} N$	A1
(b)(iii)	1. E = F/Q	C1
	$= 6.68 \times 10^{-15} / 1.6 \times 10^{-19}$ $= 4.2 (4.18) \times 10^{4} \text{ N C}^{-1}$	A1
	2. E = V/d	C1
	$V = 4.18 \times 10^4 \times 0.045$	A1
	$= 1.9 \times 10^3 \text{ V}$	

	Answer	Mark
(c)	a = Eq/m	C1
	or $F = ma$ and $F = Eq$	
	ratio = $\frac{(2 \times 1.6 \times 10^{-19}) \times (1.67 \times 10^{-27})}{(1.6 \times 10^{-19}) \times (4 \times 1.66 \times 10^{-27})}$ or $\frac{2 \times 1}{1 \times 4}$	A1
	= 0.50	

195. $9702_s16_qp_22$ Q: 6

gain in KE =
$$15 \times 1.6 \times 10^{-19} \times 10^{3} = 2 \times 1.6 \times 10^{-19} \times V$$
 (p.d.across plates) or

$$F (= W/d) = 15 \times 1.6 \times 10^{-19} \times 10^{3}/16 \times 10^{-3}$$

(hence
$$V = 7500 \text{ V}$$
 or $F = 1.5 \times 10^{-13} \text{ N}$)

$$E = V/d$$
 or $E = F/Q$

$$E = (7500/16 \times 10^{-3})$$
 or $E = (1.5 \times 10^{-13}/3.2 \times 10^{-19})$

$$E = 4.7 \times 10^5 (468750) \text{ V m}^{-1}$$

or

KE
$$(= \frac{1}{2}mv^2) = 15 \times 10^3 \times 1.6 \times 10^{-19}$$

KE
$$(= \frac{1}{2}mv^2) = 15 \times 10^3 \times 1.6 \times 10^{-19}$$

 $v = [(2 \times 15 \times 10^3 \times 1.6 \times 10^{-19})/(6.68 \times 10^{-27})]^{1/2} = 8.5 \times 10^5 \text{ m s}^{-1}$ (C1)
 $a (= v^2/2s) = (8.5 \times 10^5)^2/2 \times 16 \times 10^{-3} = 2.25 \times 10^{13} \text{ m s}^{-2}$

$$a = \sqrt{2}/2s$$
 = $(8.5 \times 10^5)^2/2 \times 16 \times 10^{-3} = 2.25 \times 10^{13} \text{ m s}^{-2}$
 $F = 6.68 \times 10^{-27} \times 2.25 \times 10^{-13}$ = $1.5 \times 10^{-13} \text{ N}$
 $E = F/Q$
 $Q = 2e$
 $E = 4.7 \times 10^5 \text{ V m}^{-1}$

$$F (= 6.68 \times 10^{-27} \times 2.25 \times 10^{-13}) = 1.5 \times 10^{-13} \text{ N}$$

$$E = F/Q \tag{C1}$$

$$Q = 2e (C1)$$

$$E = 4.7 \times 10^5 \,\mathrm{V} \,\mathrm{m}^{-1}$$
 (A1)

196. 9702 w16 qp 21 Q: 2

(a) force per unit positive charge	B1 [1]
------------------------------------	--------

(b) (i) time =
$$5.9 \times 10^{-2}/3.7 \times 10^{7}$$

= 1.6×10^{-9} s (1.59 × 10⁻⁹ s) A1 [1]

(ii)
$$E = V/d$$
 C1
= 2500 / 4.0 × 10⁻²

=
$$6.3 \times 10^4 \,\mathrm{N}\,\mathrm{C}^{-1} \,(6.25 \times 10^4 \,\mathrm{or}\, 62500 \,\mathrm{N}\,\mathrm{C}^{-1})$$
 A1 [2]

(iii)
$$a = Eq/m$$
 or $F = ma \text{ and } F = Eq$ C1
= $(6.3 \times 10^4 \times 1.60 \times 10^{-19})/9.11 \times 10^{-31} = 1.1 \times 10^{16} \text{ m s}^{-2}$ A1 [2]

(iv)
$$s = ut + \frac{1}{2}at^2$$

= $\frac{1}{2} \times 1.1 \times 10^{16} \times (1.6 \times 10^{-9})^2$ C1
= 1.4×10^{-2} (m)

distance from plate =
$$2.0 - 1.4$$

= 0.6 cm (allow 1 or more s.f.) A1 [3]

- (v) electric force » gravitational force (on electron)/weight or acceleration due to electric field » acceleration due to gravitational field
 B1 [1]
- (vi) v_X -t graph: horizontal line at a non-zero value of v_X B1 v_Y -t graph: straight line through the origin with positive gradient B1 [2]

197. 9702_w16_qp_23 Q: 2

- (a) force per unit positive charge B1 [1]
- (b) (i) time = $5.9 \times 10^{-2}/3.7 \times 10^{7}$ = 1.6×10^{-9} s $(1.59 \times 10^{-9}$ s) A1 [1]
 - (ii) E = V/d

$$= 2500 / 4.0 \times 10^{-2}$$

=
$$6.3 \times 10^4 \,\mathrm{N} \,\mathrm{C}^{-1} \,(6.25 \times 10^4 \,\mathrm{or} \,62500 \,\mathrm{N} \,\mathrm{C}^{-1})$$
 A1 [2]

(iii)
$$a = Eq/m$$
 or $F = ma \underline{and} F = Eq$ C1

=
$$(6.3 \times 10^4 \times 1.60 \times 10^{-19})/9.11 \times 10^{-31} = 1.1 \times 10^{16} \,\mathrm{m \, s^{-2}}$$
 A1 [2]

- (iv) $s = ut + \frac{1}{2}at^2$ = $\frac{1}{2} \times 1.1 \times 10^{16} \times (1.6 \times 10^{-9})^2$
 - $= 1.4 \times 10^{-2} \text{ (m)}$
 - distance from plate = 2.0 1.4 = 0.6 cm (*allow 1 or more s.f.*) A1 [3]
- (v) electric force » gravitational force (on electron)/weight
 or
 acceleration due to electric field » acceleration due to gravitational field
 B1 [1]
- (vi) v_X —t graph: horizontal line at a non-zero value of v_X B1 v_Y —t graph: straight line through the origin with positive gradient B1 [2]

A1 [1]

198. 9702_s15_qp_21 Q: 7

(a) a re	egion/space/area where a (stationary) charge experiences an (electric) force	B1	[1]
(b) (i)	at least four parallel equally spaced straight lines perpendicular to plates	B1	
	consistent direction of an arrow on line(s) from left to right	B1	[2]
(ii)	electric field strength $E = V/d$	C1	
	$E = (450/16 \times 10^{-3})$ = 28 × 10 ³ (28125) V m ⁻¹	A1	[2]
(iii)	W = Eqd or Vq	C1	
	$q = 3.2 \times 10^{-19} (C)$	C1	
	$W = 28125 \times 3.2 \times 10^{-19} \times 16 \times 10^{-3} \text{ or } 450 \times 3.2 \times 10^{-19}$		
	$= 1.4(4) \times 10^{-16} \mathrm{J}$	A1	[3]
(iv)	ratio = $\frac{450 \times 3.2 \times 10^{-19}}{450 \times -1.6 \times 10^{-19}}$ (evidence of working required)		

 $199.\ 9702_s20_qp_23\ Q:\ 6$

= (-) 2

	Answer	Mark
(a)	A: cross-sectional area	B1
	n: number density of <u>free</u> electrons	B1
(b)	units of I: A and units of A: m ² and units of v: ms ⁻¹	B1
	units of e: A / (m ² m ⁻³ m s ⁻¹) = A s	A1
(c)	ratio = A _Q / A _P	C1
	$= [\pi r^2] / [\pi (2r^2)]$	A1
	= 0.25	

200. 9702_w18_qp_22 Q: 7

	Answer	Mark
(a)	A: (cross-sectional) area (of wire)	B1
	n: number of free electrons per unit volume or number density of free electrons	B1
(b)	line drawn between (X, v_x) and $(Y, 4v_x)$	M1
	line has increasing gradient	A1

201. $9702 w18 qp_23 Q: 6$

	Answer	Mark
(a)	(coulomb is an) ampere second	B1
(b)	8.0×10^{-19} C and 1.6×10^{-19} C both underlined (and no others underlined)	B1
(c)	line drawn between (S, 1.00v _s) and (T, 0.25v _s)	M1
	line with decreasing magnitude of gradient	A1

 $202.\ 9702_w17_qp_22\ Q\hbox{:}\ 5$

	Answer	Mark
(a)	(coulomb is) ampere second	B1
(b)(i)	E = V/d or $E = F/Q$	C1
	F = VQ/d	A1
	$F = (2.0 \times 10^2 \times 8.0 \times 10^{-19})/4.0 \times 10^{-2} = 4.0 \times 10^{-15} \text{ N}$	
(b)(ii)	arrow pointing to the left labelled 'electric force' and arrow pointing downwards labelled 'weight'	B1
(b)(iii)	1. resultant force = $\sqrt{[(3.9 \times 10^{-15})^2 + (4.0 \times 10^{-15})^2]}$	C1
	$= 5.6 \times 10^{-15} \mathrm{N}$	A1
	2. angle = $\tan^{-1} (3.9 \times 10^{-15} / 4.0 \times 10^{-15})$	A1
	= 44°	
(c)	downward sloping line from (0, 2.0)	M1
	magnitude of gradient of line increases with time and line ends at (7, 0)	A1

203. $9702_s15_qp_22$ Q: 1

(a) (work =) force \times distance or force \times displacement or (W =) $F \times d$ M1 units of work: $kgms^{-2} \times m = kgm^2s^{-2}$ Α1 [2]

(b) (p.d. =) work (done) or energy (transformed) (from electrical to other forms) В1 [1] charge

(c) R = V/IВ1

units of V: kg m² s⁻²/A s and units of I: A C1

 $R = P/I^2$ [or P = VI and V = IR] (B1) units of P: kg m² s⁻³ and units of I: A (C1)

or

 $R = V^2/P$ (B1) units of V: $kg m^2 s^{-2}/A s$ and units of P: $kg m^2 s^{-3}$ (C1)

units of R: $(kg m^2 s^{-2}/A^2 s =) kg m^2 s^{-3} A^{-2}$ Α1 [3]

 $204.\ 9702_s20_qp_22\ Q\hbox{:}\ 5$

	Answer	Mark
(a)	Hooke's (law)	B1
(b)(i)	$\sigma = F/A$	C1
	= 36 / (4.1 × 10 ⁻⁷)	A1
	$= 8.8 \times 10^7 \mathrm{Pa}$	
(b)(ii)	Young modulus = σ/ε or $F/A\varepsilon$	C1
	$\varepsilon = 8.8 \times 10^7 / (1.7 \times 10^{11})$	A1
	$=5.2 \times 10^{-4}$	
(c)	$R = \rho L / A$	C1
	$\Delta R = \rho \Delta x / A$	C1
	$= 3.7 \times 10^{-7} \times 0.12 \times 10^{-3} / (4.1 \times 10^{-7})$	
	= 1.1 × 10-4 Ω	A1
(d)	remove the force/F and wire returns to original length	B1

 $205.\ 9702_s19_qp_23\ Q:\ 1$

	Answer	Mark
(a)(i)	potential difference / current	B1
(a)(ii)	$R = 4.0 \times 10^9 (\Omega)$	C1
	$I = 0.60/4.0 \times 10^9 = 1.5 \times 10^{-10} \text{ (A)}$	A1
	I = 150 pA	
(b)	units of energy: kg m² s ⁻²	C1
	units of charge: As	C1
	units of potential difference: (kgm²s-²/As =) kgm²A-¹s-³	A1

206. 9702_w18_qp_22 Q: 6

	Answer	Mark
(a)	joule/coulomb	B1
(b)(i)	$7.0 = (I \times 5.2) + (I \times 6.0) + 1.4$	C1
	I = 0.50 A	A1
(b)(ii)	R = 1.4/0.50 = 2.8Ω	A1
(b)(iii)	$P = EI$ or $P = VI$ or $P = I^2R$ or $P = V^2/R$	C1
	efficiency = $[(0.50^2 \times 6.0)/(7.0 \times 0.50)]$ (×100) or efficiency = $[(0.50 \times 3.0)/(7.0 \times 0.50)]$ (×100) or efficiency = $[(3.0^2/6.0)/(7.0 \times 0.50)]$ (×100)	C1
	efficiency = 43%	A1
(b)(iv)	$R = \rho U A$	C1
	$\alpha = \rho/R$	A1
	$=3.7\times10^{-7}/6.0$	
	$= 6.2 \times 10^{-8} \mathrm{m}$	

$207.\ 9702_w17_qp_21\ Q{:}\ 7$

	Answer	Mark
(a)	(the ohm is) volt / ampere	B1
(b)(i)	$R = \rho L/A$	C1
	ratio = $[\rho L/(\pi d^2/4)]/[0.028\rho \times 7.0L/\{\pi (14d)^2/4\}] = 1000$ or ratio = $14^2/(0.028 \times 7) = 1000$	A1
(b)(ii)	same current (in connecting and filament wires) and the lamp/filament (wire) has greater resistance	B1
(b)(iii)	$P = V^2/R$ or $P = VI$ or $P = I^2R$	C1
	(for filament wire) $R = 12^2/6.0$ or $R = 6.0/0.50^2$ or $R = 12/0.50$	C1
	(for filament wire) $R = 24 \Omega$ (for connecting wire) $R = 24 / 1000$ $= 2.4 \times 10^{-2} \Omega$	A1
(b)(iv)	resistance of connecting wire increases	B1
	current in circuit/lamp/filament (wire) decreases or potential difference across lamp/filament (wire) decreases	M1
	(so) resistance of lamp/filament (wire) decreases	A1

$208.\ 9702_w17_qp_22\ Q\hbox{:}\ 6$

	Answer	Mark
(a)	flow of charge carriers	B1
(b)(i)	nALe	B1
(b)(ii)	(t is time taken for electrons to move length L) $I = Q/t$	B1
	I = nALe/t or I = nALe/(L/v) or I = nAvte/t and $I = nAve$	B1
(c)(i)	ratio = area at X/area at Y = $[\pi d^2/4]/[\pi (0.69d)^2/4]$ or $d^2/(0.69d)^2$ or $1/0.69^2$	C1
	= 2.1	A1
(c)(ii)	1. $R = \rho L/A$ or $R/L \propto 1/A$	C1
	resistance per unit length = $1.7 \times 10^{-2} \times (\text{area at X/area at Y})$ = $1.7 \times 10^{-2} \times 2.1$ = $3.6 \times 10^{-2} \Omega \text{ m}^{-1}$	A1
	2. $P = I^2 R$ or $P = V^2 / R$	C1
	$R = 3.6 \times 10^{-2} \times 3.0 \times 10^{-3} \ (= 1.08 \times 10^{-4} \Omega)$	A1
	$P = 0.50^2 \times 1.08 \times 10^{-4} \text{ or } P = (5.4 \times 10^{-5})^2 / 1.08 \times 10^{-4}$	
	$= 2.7 \times 10^{-5} \text{W}$	

	Answer	Mark
(c)(ii	(cross-sectional area decreases so) resistance increases	M1
	$(P = I^2R, so)$ power increases	A1

209. $9702_w17_qp_23$ Q: 6

	Answer	Mark
(a)(i)	P = VI	C1
	I = 30 / 120	A1
	= 0.25 A	
(a)(ii)	Q = 0.25 × 3.0 × 3600 (= 2700)	C1
	number = $(0.25 \times 3.0 \times 3600) / 1.60 \times 10^{-19}$	A1
	= 1.7 × 10 ²²	
(b)	$R = V/I$ or $R = P/I^2$ or $R = V^2/P$	C1
	= $120/0.25$ or = $30/0.25^2$ or = $120^2/30$ = 480Ω	A1

		Answer			Mark
	(c)	$R = \rho l / A$.0.		C1
		$A = (6.1 \times 10^{-7} \times 580 \times 10^{-3})/480 = 7.37 \times 10^{-10}$			C1
		$d = [(4 \times 7.37 \times 10^{-10}) / \pi]^{1/2}$			A1
		= 3.1 × 10 ⁻⁵ m			
	(d)	temperature decreases and so resistance decreases			B1
). 97	02_s	16_qp_21 Q: 6			
(a)	(cou	ulomb is) ampere second	B1	[1]	
(b)	(tota	al) charge or Q = <i>nAle</i>	M1		
	<i>I</i> =	Q/t and 1/t = v	M1		
	I =	nAle/t = nAve therefore $v = I/nAe$	A1	[3]	
(c)	(i)	ratio = $(I/nA_Ye)/(I/nA_Ze)$	C1		
		$= A_{\rm Z}/A_{\rm Y} \text{ or } 4A/A \text{ or } \pi d^2/(\pi d^2/4)$	C1		
		= 4	A1	[3]	

so $R_{\rm Y}/R_{\rm Z} = 2$

210. 9702 s16 qp 21 Q: 6

(a)	(coulomb is) ampere	esecond
-----	---------------------	---------

(b) (total) charge or
$$Q = nAle$$

$$I = Q/t \text{ and } l/t = v$$

$$I = nAle/t = nAve$$
 therefore $v = I/nAe$

(c) (i) ratio =
$$(I/nA_Ye)/(I/nA_Ze)$$

$$= A_z/A_y$$
 or $4A/A$ or $\pi d^2/(\pi d^2/4)$

Α1 [3]

(ii)
$$R = \rho l / A \text{ or } R = 4 \rho l / \pi d^2$$

В1

$$R_{\rm Y} = \rho l/A$$
 and $R_{\rm Z} = \rho(2l)/4A$

 $R_Y = 4\rho l / \pi d^2$ and $R_Z = 4\rho (2l) / \pi 4d^2$ or $2\rho l / \pi d^2$ so $R_Y / R_Z = 2$

Α1 [2]

(iii)
$$V = 12R_Y/(R_Y + R_Z)$$
 or $I = 12/(R_Y + R_Z)$ and $V = IR_Y$

C1

$$V = 12 \times 2/3$$

$$= 8(.0)V$$

Α1 [2]

(iv) ratio =
$$I^2 R_Y / I^2 R_Z$$
 or $(V_Y^2 / R_Y) / (V_Z^2 / R_Z)$ or $(V_Y I) / (V_Z I)$

Α1 [1]

[3]

(a) ohm is volt per ampere or volt/ampere B1	[1]
--	-----

(b) (i)
$$R = \rho l / A$$

$$R_{\rm P} = 4\rho(2l)/\pi d^2$$
 or $8\rho l/\pi d^2$ or $R_{\rm Q} = \rho l/\pi d^2$ or ratio idea e.g. length is halved hence R halved and diameter is halved hence R is $1/4$

$$R_{Q} (= 4\rho l/\pi 4d^{2}) = \rho l/\pi d^{2}$$

= $R_{P}/8$

(ii) power =
$$I^2 R$$
 or V^2 / R or VI A1 [3]

=
$$(1.25)^2 \times 12 + (10)^2 \times 1.5$$
 or $(15)^2/12 + (15)^2/1.5$ or 15×11.25 C1
= $(18.75 + 150 =) 170 (168.75)$ W

(iii)
$$I_P = (15/12 =) 1.25$$
 (A) and $I_Q = (15/1.5 =) 10$ (A) C1 $v_P/v_Q = I_P n A_Q e/I_Q n A_P e$ or $(1.25 \times \pi d^2)/(10 \times \pi d^2/4)$ C1

212. 9702 m20 qp 22 Q: 6

	Answer	Mark
(a)	E= V/d d = 350/1.4 × 10 ⁴	C1
	= 0.025 m	A1
(b)(i)	E=F/Q	C1
	Q = $6.7 \times 10^{-15} / 1.4 \times 10^4$ (= 4.8×10^{-19} C) = $(4.8 \times 10^{-19} / 1.6 \times 10^{-19})$ e	C1
	= 3.0 e	A1
(b)(ii)	mass = $8.3 \times 10^{-27} / 1.66 \times 10^{-27}$ = 5.0 u	A1
(b)(iii)	number = 5 – 3 = 2	A1

 $213.\ 9702_s15_qp_21\ Q\hbox{:}\ 5$

(a)	very high/infinite resistance for negative voltages up to about 0.4 V	B1	
	resistance decreases from 0.4 V	В1	[2]

(c) (i)
$$R = 12^2/36 = 4.0 \Omega$$

or
$$I = P/V = 36/12 = 3.0 \text{ A} \text{ and } R = 12/3.0 = 4.0 \Omega$$
 (A1) [1]

(ii) lost volts =
$$0.5 \times 2.8 = 1.4$$
 (V) or $E = 12 = 2.8 \times (R + r)$ C1
$$R = V/I = (12 - 1.4)/2.8 \qquad \text{or } (R + r) = 4.29 \ \Omega$$
 C1
$$= 3.8 \ (3.79) \ \Omega$$
 or $R = 3.8 \ \Omega$ A1 [3]

(d) resistance of the lamp increases with increase of V or I B1 [1]

 $214.\ 9702_m20_qp_22\ Q:\ 5$

	Answer	Mark
(a)	volt / ampere	B1
(b)	$R = \rho L/A$	C1
	$L = (1.8 \times 0.38 \times 10^{-6}) / 9.6 \times 10^{-7}$	C1
	= 0.71 m	A1
(c)(i)	thermal energy is dissipated in resistor Y	B1
(c)(ii)	V/1.2 = 1.8/(1.8 + 0.6)	C1
	V = 0.90 V	A1
4	or	
	I = 1.2/(1.8 + 0.6) = 0,50	(C1)
	V= 0.50 × 1.8 = 0.90 V	(A1)
(d)(i)	remain the same	B1
(d)(ii)	decrease	B1
(e)(i)	1/R = 1/1.8 + 1/3.6 $R = 1.2 \Omega$	A1

	Answer	Mark
(e)(ii)	I = 1.2/(1.2 + 0.60)	C1
	= 0.67 A	A1
	or	
	$V_{Y} = 1.2 \times 0.60 / (1.2 + 0.60) (= 0.40)$	(C1)
	I = 0.40 / 0.60 = 0.67 A	(A1)

 $215.\ 9702_s20_qp_22\ Q\hbox{:}\ 6$

	Answer	Mark
(a)(i)	energy is dissipated in the internal resistance/r	B1
(a)(ii)	1. $I = Q/t$	C1
	= 750 / 1500	A1
	= 0.50 A	
	2. $V = W/Q$ or $V = W/It$	C1
	= 5700/750 or 5700/(0.50 × 1500)	A1
	= 7.6 V	
	or	
	V=P/I and $P=W/t$	(C1)
	V = 3.8/0.50	(A1)
	= 7.6 V	
	3. $r = (7.8 - 7.6)/0.50$	C1
	= 0.40 Ω	A1
(b)(i)	90 Ω and 45 Ω resistors shown connected in parallel	B1
(b)(ii)	the resistors connected in parallel labelled as 90 Ω and 45 Ω with the other resistor labelled as 20 Ω	M1
	$V_{ ext{OUT}}$ or 3.6 V labelled across the 20 Ω resistor	A1

216. 9702_s20_qp_23 Q: 5

	Answer	Mark
(a)	joule per coulomb	B1
(b)(i)	$1/R = 1/R_1 + 1/R_2$	A1
	= 1/300 + 1/200	
	$R = 75 \Omega$	
(b)(ii)	R = 75 + 55	A1
	= 130 Ω	
(c)(i)	1. P= I ² R	C1
	or $P = VI$ and $V = IR$	
	I = (0.20 / 55) ^{0.5}	A1
	= 0.060 A	
	2. I = 0.060/4	A1
	= 0.015 A	
(c)(ii)	potential difference = 130 × 0.060	A1
	= 7.8 V	
	or	
	potential difference = $(300 \times 0.015) + (55 \times 0.060)$	(A1)
	= 7.8 V (other valid methods are also possible)	

217. 9702_w20_qp_21 Q: 7

	Answer	Mark
(a)	volt / ampere	B1
(b)	R=pL/A	C1
	$A = 460 \times 10^{-9} \times 2.5 / 3.2$	C1
	$= 3.6 \times 10^{-7} \mathrm{m}^2$	A1
c)(i)	energy is dissipated in the internal resistance/r	B1
c)(ii)	E = IR + Ir or $E = I(R + r)$	B1
(c)(iii)	P=12R or P=12r	C1
	I = E / 2r	A1
•	$(so) P = E^2/4r$	

 $218.\ 9702_w20_qp_22\ Q:\ 6$

	Answer	Mark
(a)	$I = I_1 + I_2 + I_3$	B1
	$(V/R) = (V/R_1) + (V/R_2) + (V/R_3)$ or $(I/V) = (I_1/V) + (I_2/V) + (I_3/V)$	B1
	and	
	$1/R = 1/R_1 + 1/R_2 + 1/R_3$	
(b)(i)	current = 0.49 + 0.45	A1
	= 0.94 A	
(b)(ii)	$8.0 = (0.94 \times r) + (0.45 \times 16)$	C1
	r = 0.85 Ω	A1
(c)	I = Anvq	C1
	$v = (0.45 / 0.49) \times 2.1 \times 10^{-4}$	
	$= 1.9 \times 10^{-4} \mathrm{m s^{-1}}$	A1
(d)	total/combined resistance decreases	B1
	(current in battery increases so terminal) potential difference decreases	B1

 $219.\ 9702_w20_qp_23\ Q:\ 6$

	Answer	Mark
(a)	work (done) / energy (transferred from electrical to other forms)	B1
	charge	
(b)	$R = \rho L/A$	B1
	$V = LA$ and (so) $R = \rho V / A^2$ (with ρ and V constant)	B1
(c)	E = IR + Ir or $E = I(R + r)$ or $E - Ir = IR$	A1
	and $R = (E/I) - r$	
(d)(i)	$P=I^2R$ or $P=IV$ or $P=V^2/R$	C1
	$R = 5.4 (\Omega)$ or $V = 10.8 (V)$	C1
	$P = 2.0^2 \times 5.4$	A1
	= 22 W	
(d)(ii)	1. $r = 0.60 \Omega$	A1
	2. E = gradient	C1
	= e.g. 5.4 / 0.45	A1
	= 12 V	

 $220.\ 9702_m19_qp_22\ Q\hbox{:}\ 6$

	Answer	Mark	
(a)	e.m.f.: energy transferred from chemical to electrical (per unit charge)	B1	
	p.d.: energy transferred from electrical to thermal (per unit charge)	B1	

	Answer	Mark
(b)(i)	1 I = 4.8/32 = 0.15 A	A1
	2 $P = EI$ or $P = VI$ or $P = I^2R$ or $P = V^2/R$ = 6.0×0.15 or $0.15^2 \times 40$ or $6.0^2/40$	C1
	= 0.90 W	A1
	3 number = It/e = $[0.15 \times 25]/1.6 \times 10^{-19}$	C1
	= 2.3 × 10 ¹⁹	A1
	or $Q = 0.15 \times 25 (= 3.75)$ number = $3.75 / 1.6 \times 10^{-19}$	(C1
	= 2.3 × 10 ¹⁹	(A1
	4 $4.8/6.0 = 32/(R_{XY} + 32)$ or $1.2/6.0 = R_{XY}/(R_{XY} + 32)$ or $4.8/1.2 = 32/R_{XY}$	C1
	$R_{XY} = 8.0 \Omega$	A ²
	Alternative methods:	
	$R_{XY} = (6.0 - 4.8) / 0.15$ or	(C1
	= 8.0 Ω	(A1
	or 6.0 = 0.15 (32 + R _{XY})	(C1
	$R_{XY} = 40 - 32$ = 8.0 Ω	(A1)
	Answer	Mark
(b)(i)	5 1/8.0 = 1/R _X + 1/24	C1
	Rx = 12 Ω	A1
	Alternative method:	
	$I_Z = 4.8 / 32 = 0.15$ and $I_Y = 1.2 / 24 = 0.05$ $I_X = 0.15 - 0.05 (= 0.10)$	(C1)
	$R_{\rm X} = 1.2/0.10 = 12\Omega$	(A1
(b)(ii)	total resistance decreases	M1
	(so voltmeter) reading increases	A1

$221.\ 9702_s19_qp_21\ Q:\ 6$

	Answer	Mark
(a)	energy is dissipated in the internal resistance	B1
(b)	E = V + Ir	B1
(c)(i)	(graph shows) maximum value of potential difference is 2.8 (V)	B1
	or	
	(graph shows) when current/ I (from battery) is zero, V is 2.8 (V) / E	
(c)(ii)	r = (-)gradient or $r = (E - V)/I$ or substituted values from the graph for E , V and I	C1
	$r = 1.4 \Omega$	A1
(d)(i)	R = 2.1/0.50	A1
	= 4.2 Ω	
(d)(ii)	number = 0.50 / 1.60 × 10 ⁻¹⁹	A1
	= 3.1 × 10 ¹⁸	
(d)(iii)	energy = EIt	C1
	or	
	P = EI and $P = W/t$	
	$(9.2 - 1.6) \times 10^3 = 2.8 \times 0.50 \times t$	C1
	$t = 5.4 \times 10^3 \mathrm{s}$	A1

$222.\ 9702_s19_qp_22\ Q\hbox{:}\ 5$

	Answer	Mark
(a)	$\underline{\text{sum of e.m.f.(s)}} = \underline{\text{sum of p.d.(s)}}$	M1
	around a loop/around a closed circuit	A1
(b)(i)	1. 1/R = 1/R ₁ + 1/R ₂ 1/R = 1/90 + 1/18	C1
	$R = 15\Omega$	A1
	2. I = V/R	C1
	I = 4.8/15 or I = 4.8/90 + 4.8/18 I = 0.32 A	Af
(b)(ii)	E = V + Ir or $E = I(R + r)$	C-
	$5.6 = 4.8 + 0.32 r$ so $r = 2.5 (\Omega)$	A1
	or	
	$5.6 = 0.32 \times (15 + r)$ so $r = 2.5 (\Omega)$	
(b)(iii)	$P = EI$ or $P = VI$ or $P = I^2R$ or $P = V^2/R$	C1
	ratio = (0.32 ² × 2.5)/(5.6 × 0.32) or 0.256/1.792	C1
	= 0.14	A1

	Answer	Mark	
(c)	7.2 - 5.6 - 2.5I - 3.5I = 0	C1	
	I = 0.27 A	A1	

223. 9702_s19_qp_23 Q: 6

	Answer	Mark
(a)	volt / ampere	В1
(b)(i)	1. I = 1.8 + 0.60	A1
	= 2.4 A	
	2. $(8.0 \times 0.60) = 1.8 \times (2.0 + R_Z)$	C1
	$R_Z = 0.67 \Omega$	A1
	3. $E - (2.4 \times 1.5) = (0.60 \times 8.0)$	C1
	or	
	$E - (2.4 \times 1.5) = 1.8 \times (2.0 + 0.67)$	
	or	
	$E = 2.4 \times [1.5 + (8.0 \times 2.67)/(8.0 + 2.67)]$	
	E = 8.4 V	A1
(b)(ii)	1. $R = \rho L/A$ or $R \propto 1/A$	C1
	ratio = $R_{\rm Y}/R_{\rm X}$ = 2.0 / 8.0	A1
	= 0.25	
	2. $I \propto Av$ or $I_X/I_Y = A_{XVX}/A_{YVY}$	C1
	ratio = (0.60 / 1.8) × (1 / 0.25)	A1
	= 1.3	

 $224.\ 9702_w19_qp_21\ Q:\ 6$

	Answer	Mark
(a)	work done / charge or energy (transferred from electrical to other forms) / charge	B1
(b)	for V < 0.25 V resistance is infinite/very high (as current is zero)	B1
	for V > 0.25 V resistance decreases (as V increases)	B1
(c)(i)	R = V/I	C1
	= 0.75 / (15 × 10 ⁻³)	C1
	= 50 Ω	A1

	Answer	Mark
(c)(ii)	1. $V_Y = 15 \times 10^{-3} \times 60 \ (= 0.90 \ V)$	C1
	V _X = 2.0 – 0.90 – 0.75 (= 0.35 V)	C1
	$R_{\rm X} = 0.35 / (15 \times 10^{-3})$	A1
	= 23 Ω	
	or	
	total R = 60 + 50 + R _X	(C1)
	$60 + 50 + R_X = 2.0 / (15 \times 10^{-3})$	(C1)
	$R_{\rm X}$ = 23 Ω	(A1)
	2. $P = VI$ or $P = EI$ or $P = I^2R$ or $P = V^2/R$	C1
	ratio = $\frac{\left(15 \times 10^{-3}\right)^2 \times 60}{2.0 \times 15 \times 10^{-3}}$ or $\frac{0.90 \times 15 \times 10^{-3}}{2.0 \times 15 \times 10^{-3}}$ or $\frac{\left(0.90^2 / 60\right)}{2.0 \times 15 \times 10^{-3}}$	A1
	= 0.45	

 $225.\ 9702_w19_qp_22\ Q{:}\ 6$

	Answer	Mark
(a)	sum of current(s) into junction = sum of current(s) out of junction or (algebraic) sum of current(s) at a junction is zero	B1
(b)(i)	R = V/I	C1
	= 0.60 / 7.5 × 10 ⁻³	C1
	= 80 Ω	A1
(b)(ii)	resistance decreases	B1
(c)(i)	E = 0.60 + 0.30	A1
	= 0.90 V	
(c)(ii)	(<i>I</i> =) 9.3 – 7.5	C1
	$I = 1.8 \text{ (mA)} \text{ or } 1.8 \times 10^{-3} \text{ (A)}$ $R = 0.90 / 1.8 \times 10^{-3}$ $= 500 \Omega$	A1
	or	
•	total resistance = $0.90/9.3 \times 10^{-3} = 96.8 \ (\Omega)$ total resistance of diode and X = $0.90/7.5 \times 10^{-3} = 120 \ (\Omega)$ 1/96.8 = 1/R + 1/120	(C1)
	R=500Ω	(A1)

	Answer	Mark
(c)(iii)	$P = VI \text{ or } I^2R \text{ or } V^2/R$	C1
	= $0.60 \times 7.5 \times 10^{-3}$ or $(7.5 \times 10^{-3})^2 \times 80$ or $0.60^2 / 80$	A1
	$=4.5\times10^{-3}\mathrm{W}$	
(c)(iv)	current = 2.5 mA	A1

 $226.\ 9702_w19_qp_23\ Q:\ 6$

	Answer	Mark
(a)(i)	R = V/I	C1
	resistance = (12/0.20)/2 or 6/0.20	A1
	= 30 Ω	
(a)(ii)	I = 0.50 – 0.20 (= 0.30 A)	C1
	$R + 28 = 12/0.30 (= 40 \Omega)$	A1
	$R = 12\Omega$	

	Answer	Mark
(b)	p.d. across lamp = 0.20 × 30 (= 6.0 V)	C1
	p.d. across R = 0.30 × 12 (= 3.6 V)	C1
	V _{XY} = 6.0 – 3.6	A1
	= 2.4 V	
	or	
	p.d. across lamp = 0.20 × 30 (= 6.0 V)	(C1)
	p.d. across 28 Ω resistor = 0.30 × 28 (= 8.4 V)	(C1)
	$V_{\rm XY} = 8.4 - 6.0$	(A1)
	= 2.4 V	
(c)	$P=VI$ or $P=EI$ or $P=I^2R$ or $P=V^2/R$	C1
	ratio = (6.0 × 0.20) × 2 / (12 × 0.50) or 0.20 / 0.50	A1
	= 0.40	
(d)	no change to V across lamps, so power in lamps unchanged	B1
	or current in battery/total current increases (and e.m.f. the same) so power produced by battery increases	
	both the above statements and so the ratio decreases	B1

227. 9702_m18_qp_22 Q: 5

	Answer	Mark
(a)	$\underline{sum}\underline{of}e.m.f.(s) = \underline{sum}\underline{of}p.d.(s)$	M1
	around a loop / around a closed circuit	A1
(b)(i)	1 $6.0 - 4.0I = 0$ I = 1.5 A	A1
	2 6.0 + 6.0 = I (4.0 + R + 1.5) 12 = 1.5 (4.0 + R + 1.5)	C1
	$R = 2.5 \Omega$	A1
	or 6.0 = <i>I</i> (<i>R</i> + 1.5) 6.0 = 1.5 (<i>R</i> + 1.5)	(C1)
	$R = 2.5 \Omega$	(A1)
	or combines $6 = 4I$ and $6 = I(R + 1.5)$ to give $4 = R + 1.5$	(C1)
	$R = 2.5 \Omega$	(A1)

	Answer	Mark
(b)(ii)	$I = Anvq$ ratio = $1^2/2^2$	C1
	= 0.25	A1
(b)(iii)	total (circuit) resistance increases	B1
	current / I decreases or $P \propto I$ or $P \propto 1$ / (total resistance)	M1
l	power (transformed) decreases	A1

 $228.\ 9702_s18_qp_21\ Q\hbox{:}\ 6$

	Answer	Mark
(a)	joule/coulomb	B1
(b)(i)	lamps have same p.d./lamps have p.d. of 2.7 V	B1
	current = 0.15 + 0.090	A1
	= 0.24 A	
(b)(ii)	R = (4.5 - 2.7)/0.24	C1
	or	
	$R_{\rm P}$ = 18 (Ω) and $R_{\rm Q}$ = 30 (Ω)	
	$I/R_T = 1/18 + 1/30$ and so $R_T = 11.25$ $4.5 = 0.24 \times (R + 11.25)$	
	R = 7.5Ω	A1

	Answer	Mark
(b)(iii)	$R = \rho U A$	C1
	$R_{\rm P}/R_{\rm Q} = [(2.7/0.15)/(2.7/0.09)] \ (= 0.60)$	C1
	ratio = 0.60 × 2 ²	A1
	= 2.4	
(b)(iv)	less p.d. across resistor/greater p.d. across P	B1
	greater current through \underline{P} and so resistance (of P) increases	B1

 $229.\ 9702_s18_qp_22\ Q{:}\ 6$

	Answer	Mark
(a)(i)	sum of current(s) into junction = sum of current(s) out of junction or (algebraic) sum of current(s) at a junction is zero	B1
(a)(ii)	charge	B1
(b)(i)1.	$E = I^2Rt$ or $E = VIt$ or $E = (V^2/R)t$	C1
	$E = 2.5^2 \times 2.0 \times 5.0 \times 60$ or $5.0 \times 2.5 \times 5.0 \times 60$ or $(5.0^2/2.0) \times 5.0 \times 60$	A1
	= 3800 J	
(b)(i)2.	p.d. = 8.0 – (2.0 × 2.5)	A1
	= 3.0 V	
(b)(ii)	I _X = 3.0/15 = 0.20 (A)	C1
	I _Y = 2.5 – 0.20 = 2.3 (A)	C1
	R _Y = 3.0/2.3	A1
	= 1.3 Ω	
	or	
	$R_{\rm T} = 3.0/2.5 = 1.2(\Omega)$ or $(8.0/2.5) - 2.0 = 1.2(\Omega)$	(C1)
	1/1.2 = 1/15 + 1/R _Y	(C1)
	$R_{\rm Y} = 1.3\Omega$	(A1)

	Answer	Mark
(b)(iii)1.	Z has larger radius/diameter/(cross-sectional) area	В1
	Z has (material of) smaller resistivity/greater conductivity	B1
(b)(iii)2.	current/I (in battery) increases	M1
	(P = EI so) power/P (produced by battery) increases	A1

230. 9702_s18_qp_23 Q: 6

	Answer	Mark
(a)	$R = \rho L I A$	C1
	$3.0 = \rho/[\pi \times (0.48 \times 10^{-3}/2)^2]$	C1
	$\rho = 5.4 \times 10^{-7} \Omega \text{m}$	A1
(b)(i)	p.d. = 5.0 – (2.0 × 1.6) = 1.8 V	A1
(b)(ii)1.	current in resistor = 1.8/4.5 (= 0.40 A)	C1
	current in wire = 1.6 – 0.40 (= 1.2 A)	C1
	$R_{\rm X} = 1.8/1.2$	A1
	=1.5Ω	
	or	
	$R_{\rm T} = 1.8/1.6$ or $(5.0/1.6) - 2.0 (= 1.125 \Omega)$	(C1)
	$(1/1.125) = (1/4.5) + (1/R_X)$	(C1)
	$R_{\rm X}$ = 1.5 Ω	(A1)
(b)(ii)2.	length = 1.5/3.0 or $1.5 \times 1.8 \times 10^{-7} / (5.4 \times 10^{-7})$	A1
	= 0.50 m	

$231.\ 9702_w18_qp_21\ \ Q:\ 6$

	Answer	Mark
(a)	sum of e.m.f.(s) equal to sum of p.d.(s)	M1
	around a loop/around a closed circuit	A1
(b)(i)	current in variable resistor = (6.0/2.4) + (6.0/1.2) (= 7.5 A)	C1
	p.d. across variable resistor = 9.0 – 6.0 (= 3.0 V)	C1
	R = 3.0/7.5	A1
	= 0.40 Ω	
	or	
	$\frac{1}{R_T} = \frac{1}{2.4} + \frac{1}{1.2}$	(C1)
	$R_{\rm T} = 0.80 (\Omega)$	
	$\frac{3}{9} = \frac{R}{(R+0.80)}$ or $\frac{3}{R} = \frac{6}{0.8}$	(C1)
	R=0.40Ω	(A1)
(b)(ii)	$P=V^2/R$ or $P=I^2R$ or $P=IV$	C1
	$P = 6.0^2/24$ or $2.5^2 \times 2.4$ or 6.0×2.5	A1
	= 15 W	

	Answer	Mark
(b)(iii)	1. $R = \frac{\rho L}{A}$	C1
	ratio = $(2.4/1.2) \times (3/1)$ = 6.0	A1
	2. $(I = nAvq)$ $I_X/I_Y = 2.5/5.0$ or 1.2/2.4 or 0.5	C1
	ratio = $(2.5/5.0) \times (1/3)$ or $(1.2/2.4) \times (1/3)$ = 0.17	A1

232. 9702_w18_qp_23 Q: 7

	**	Answer	Mark
(a)	sum of current(s) in(to) junction or (algebraic) sum of current(s) at	= <u>sum of</u> current(s) out of junction a junction is zero	B1
(b)(i)	1. potential difference = 0		A1
	2. potential difference = 9.6 V		A1
(b)(ii)	for resistance in parallel: $(1/R_T)$)= (1/400) + (1/400)	C1
	$R_{\mathrm{T}} = 200 (\Omega)$		
	V/9.6 = 200/600		C1
	V = 3.2 V		A1

 $233.\ 9702_m17_qp_22\ Q:\ 6$

	Answer	Mark
(a)	$I = I_1 + I_2 + I_3$	B1
	$(V/R) = (V/R_1) + (V/R_2) + (V/R_3) \text{ or } (I/V) = (I_1/V) + (I_2/V) + (I_3/V)$ <u>and</u> (so) $1/R = 1/R_1 + 1/R_2 + 1/R_3$	A1
(b)(i)	e.m.f. is total energy available per unit charge	B1
	energy is dissipated in the internal resistance/resistor/r	B1
(b)(ii)1	Energy = EQ	C1
	$= 6.0 \times 2.5 \times 10^{3}$ = 1.5 \times 10^{4} J	A1
(b)(ii)2	number = $2.5 \times 10^3 / 1.6 \times 10^{-19}$ = $1.6 \times 10^{22} (1.56 \times 10^{22})$	A1
(b)(iii)	$1/4.8 = 1/12 + 1/R_X$ $R_X = 8.0 \Omega$	A1
(b)(iv)	$P = V^2/R$ or $P = VI \text{ and } V = IR$	C1
	ratio = $(V^2/8)/(V^2/12) = 12/8$ = 1.5	A1
(b)(v)	(total) current, or I , increases and $P = EI$ or $P = 6I$ or $P \propto I$	B1
	or total (circuit) resistance decreases and $P = E^2/R$ or $P = 36/R$ or $P \propto 1/R$	

 $234.\ 9702_s17_qp_21\ Q:\ 6$

	Answer	Mark
(a)	volt / ampere	B1
(b)(i)	$R_{\rm T} = [1/3.0 + 1/6.0]^{-1} + 4.0 (= 6.0 \Omega)$	C1
	I = 1.5/6.0	C1
	= 0.25 A	A1
(b)(ii)	V _B = 0.5 V	A1
	I = 0.5/3.0	
	= 0.17 (0.167) A	
(b)(iii)	$P = I^2 R$ or VI or V^2 / R	C1
	ratio = $(0.167^2 \times 3.0)/(0.25^2 \times 4.0)$	A1
	= 0.33	
(c)(i)	vary/change/different radius/diameter/cross-sectional area (of wire)	B¹
(c)(ii)	v=I/Ane	C1
	ratio = $\frac{(I_{\rm B} / A_{\rm B})}{(I_{\rm C} / A_{\rm C})}$ or $\frac{I_{\rm B}}{I_{\rm C}} \times \frac{A_{\rm C}}{A_{\rm B}}$	
	$(R \propto 1/A \text{ so}) \text{ ratio} = \frac{I_B}{I_C} \times \frac{R_B}{R_C} = \frac{0.167}{0.25} \times \frac{3.0}{4.0}$	A1
	= 0.50	
(d)(i)	0.25 A to 0.13 (0.125) A or halved	A1
(d)(ii)	no change	A1

$235.\ 9702_s17_qp_22\ Q\hbox{:}\ 7$

	Answer	Mark
(a)	energy transformed from chemical to electrical /unit charge (driven around a complete circuit)	B1
(b)(i)	the current decreases (as resistance of Y increases)	M1
	lost volts go down (as resistance of Y increases)	M1
	p.d. AB increases (as resistance of Y increases)	A1
(b)(ii)1.	$1.50 = 0.180 \times (6.00 + 0.200 + R_X)$	C1
	$R_{\rm X}$ = 2.1(3) Ω	A1
(b)(ii)2.	p.d. AB = 1.5 – (0.180 × 0.200) or 0.18 × (2.13 + 6.00)	C1
	= 1.46(4) V	A1
(b)(ii)3.	efficiency = (useful) power output / (total) power input or IV / IE	C1
	(= 1.46 / 1.5) = 0.97 [0.98 if full figures used]	A1

$236.\ 9702_s17_qp_23\ Q:\ 6$

	Answer	Mark
(a)(i)	straight line through the origin	B1
(a)(ii)	zero current for one direction (–ve V) up to zero or a few tenths of volt (+ve V)	B1
	straight line positive gradient/increasing gradient (+ve V)	B1
(b)(i)	1. current = 2.8 A	A1
	2. 4(.0) A for each lamp	C1
	current in circuit = 8(.0) A	A1
(b)(ii)	use of $R = V/I$ with correct values of V from graph for each arrangement	C1
	1. series resistance (= 2.1 + 2.1) = 4.2 or 4.3Ω or $(12/2.8) = 4.3 \Omega$	A1
	2. parallel resistance 1.5 Ω (each lamp 3.0 Ω) or (12 / 8.0) = 1.5 Ω	A1
(b)(iii)	power = IV or V^2/R or I^2R	C1
	ratio = (2.8 × 6.0) / (4.0 × 12) = 0.35	A1

237. 9702_w17_qp_21 Q: 5

		Answer	Mark
(a)	$I_1 + I_2 = I_3$ [any subject]		B1
(b)	$E_1 + E_3 = I_1R_1 + I_3R_3 + I_3R_4$ [an	y subject]	В1
(c)	$E_1 - E_2 = I_1 R_1 - I_2 R_2$ [any subjection]	ect]	B1

 $238.\ 9702_m16_qp_22\ Q\hbox{:}\ 5$

(a) (i)	movement/flow of charge carriers	B1
(4) (1)		Σ.
(ii)	work (done) or energy (transformed)(from electrical to other forms) charge	B1
(b) (i)	p.d. across one lamp = 2.5 V	C1
	resistance = $[(8.7 - 7.5)/0.3]/2 = 2.0 (\Omega)$	A1
(ii)	straight line through the origin with gradient of 0.5	M1 A1
(iii) P	= I^2R or $P = VI$ and $V = IR$ or $P = V^2/R$ and $V = IR$	C1
	= $0.30^2 \times 2.0$ = 0.60×0.30 = $0.60^2 / 2.0$ = 0.18 (W)	A1
(iv) 1	$R = \rho l/A$	C1
(14)	$l = (2.0 \times 0.40 \times 10^{-6}) / 1.7 \times 10^{-8}$	
	= 47 (m)	A1
2	$I = Anvq$ $v = 0.30 / (0.40 \times 10^{-6} \times 8.5 \times 10^{28} \times 1.6 \times 10^{-19})$	C1
	$= 5.5 \times 10^{-5} (\text{m s}^{-1})$	A1

239. 9702_s16_qp_22 Q: 7

(a)	charge exists only in discrete amounts	B1	[1]
-----	--	----	-----

(b) (i)
$$E = I(R + r)$$
 or $V = IR$

(total resistance =)
$$2.7 + 0.30 + 0.25 = 3.25 \Omega$$
) M1

$$I = 9.0/(2.7 + 0.30 + 0.25)$$
 or $9.0/3.25 = 2.8$ A A1 [3]

(ii)
$$V = IR_{\text{ext}}$$
 C1
= 2.77 × 3.0 or 2.8 × 3.0

or

$$V = E - Ir$$
 (C1)
= 9.0 - 2.77 × 0.25 or 9.0 - 2.8 × 0.25

$$V = 8.3 (8.31) V$$
 or $8.4 V$

(c) (i)
$$I = nevA$$

$$V = 8.3 (8.31) V$$
 or $8.4 V$

A1

 $I = nevA$
 $V = 2.77 / (8.5 \times 10^{29} \times 1.6 \times 10^{-19} \times 2.5 \times 10^{-6})$

= 8.1
$$(8.147) \times 10^{-6} \text{ ms}^{-1}$$
 or $8.2 \times 10^{-6} \text{ ms}^{-1}$ A1 [2]

(ii) A reduces by a factor 4 (1/4 less) or resistance of Z goes up by $4\times$ M1

current goes down but by less than a factor of 4 (as total resistance does not go up by a factor of 4) so driff speed goes up Α1 [2]

 $240.\ 9702_w16_qp_21\ Q:\ 6$

(b) (i) 1.
$$V = IR$$
 or $E = IR$

$$I = 14/6.0$$

= 2.3 (2.33) A A1 [2]

2. total resistance of parallel resistors =
$$8.0 \Omega$$

current =
$$14/(6.0 + 8.0)$$

= $1.0 \,\text{A}$ A1 [2]

(ii)
$$P = EI$$
 (allow $P = VI$) or $P = V^2/R$ or $P = I^2R$

change in power =
$$(14 \times 2.33) - (14 \times 1.0)$$

or $(14^2 / 6.0) - (14^2 / 14)$
or $(2.33^2 \times 6.0) - (1.0^2 \times 14)$

(c)
$$I = Anvq$$

change in power =
$$(14 \times 2.33) - (14 \times 1.0)$$

or $(14^2/6.0) - (14^2/14)$
or $(2.33^2 \times 6.0) - (1.0^2 \times 14)$
= 19 W (18 W if 2.3 A used)

A1 [2]

 $I = Anvq$

ratio = $(0.50n/n) \times (1.8A/A)$ or ratio = 0.50×1.8 C1

= 0.90

A1 [2]

 $241.\ 9702_w16_qp_22\ Q\hbox{:}\ 5$

(a) total/sum of electromotive forces or e.m.f.s = total/sum of potential differences or p.d.s M1 around a loop/(closed) circuit Α1 [2] C1 **(b)** (i) (current in battery =) current in A + current in B or $I_A + I_B$ (I =) 0.14 + 0.26 = 0.40 AΑ1 [2] (ii) E = V + IrC1 6.8 = 6.0 + 0.40r or 6.8 = 0.40(15 + r) $r = 2.0 \Omega$ Α1 [2] (iii) R = V/IC1 ratio (= R_A/R_B) = (6.0/0.14)/(6.0/0.26) = 42.9/23.1 or 0.26/0.14[2] = 1.9 (1.86)Α1 $P = I^2R$ C1 (iv) 1. P = EI or VIor $=6.8^2/17$ $= 0.40^2 \times 17$ $= 6.8 \times 0.40$ = 2.7W (2.72W)Α1 [2] 2. output power = VI $= 6.0 \times 0.40 (= 2.40 \text{ W})$ C1 efficiency = $(6.0 \times 0.40)/(6.8 \times 0.40) = 2.40/2.72$ = 0.88 or 88% (allow 0.89 or 89%) Α1 [2]

 $242.\ 9702\ \ w16\ \ qp\ \ 23\ \ Q:\ 6$

(b) (i) 1.
$$V = IR$$
 or $E = IR$

$$I = 14/6.0$$

= 2.3 (2.33) A A1 [2]

2. total resistance of parallel resistors =
$$8.0 \Omega$$

current =
$$14/(6.0 + 8.0)$$

= $1.0 A$ A1 [2]

(ii)
$$P = EI$$
 (allow $P = VI$) or $P = V^2/R$ or $P = I^2R$

change in power =
$$(14 \times 2.33) - (14 \times 1.0)$$

or $(14^2 / 6.0) - (14^2 / 14)$
or $(2.33^2 \times 6.0) - (1.0^2 \times 14)$

(c)
$$I = Anvq$$

ratio =
$$(0.50n/n) \times (1.8A/A)$$
 or ratio = 0.50×1.8 C1
= 0.90 A1 [2]

243. 9702 s15 qp 22 Q: 5

- (a) curved line showing decreasing gradient with temperature riseM1smooth line not touching temperature axis, not horizontal or vertical anywhereA1 [2]
- (b) (i) (no energy lost in battery because) no/negligible internal resistance B1 [1]

(d) power = $I^2 R$ or VI or V^2/R

current in second circuit (= 6.0/12.5) = 0.48 (A)

ratio = $[(0.36)^2 \times 16] / [(0.48)^2 \times 12] = 0.75 [0.77 \text{ if full s.f. used}]$

(ii)
$$I = V/R$$
 = 8/15 × 10³ or 1.6/3.0 × 10³ or 2.4/4.5 × 10³ or 12/22.5 × 10³ C1 = 0.53 × 10⁻³ A A1 [2] (iii) p.d. across $X = 12 - 8.0 - 3.0 \times 10^3 \times 0.53 \times 10^{-3} (= 2.4 \text{V})$ C1 $R_X = 2.4 I (0.53 \times 10^{-3})$ C1 or $R_{\text{tot}} = 12/0.53 \times 10^{-3} (= 22.5 \times 10^3 \, \Omega)$ (C1) $R_X = (22.5 - 15.0 - 3.0) \times 10^3$ (

C1

В1

В1

[3]

245. 9702 w15 qp 22 Q: 6

245.9702	245. 9702_w15_qp_22 Q: 6			
(a) i	inte	rnal resistance causes lost volts	В1	
1	p.d.	across lamp is less than 12V, power is less than 48W	B1	[2]
(b)	(i)	greater lost volts or p.d. across cell/lamp reduced, less current in lamp	В1	[1]
((ii)	p.d. across lamp/current in lamp decreases, hence resistance decreases	B1	[1]
246. 9702	2_w	v15_qp_23 Q: 5		
(a)	(i)	resistance = V/I	В1	
		very high/infinite resistance at low voltages	В1	
		resistance decreases as V increases	B1	[3]
(ii)	p.d. from graph 0.50(V)	C1	
		resistance = $0.5/(4.4 \times 10^{-3})$		
		= 110 (114) Ω	A1	[2]
(b)	(i)	current (= $1.2/375$) = 3.2×10^{-3} A	A1	[1]
((ii)	current in diode = 4.4×10^{-3} (A) total resistance = $1.2/4.4 \times 10^{-3} = 272.7$ (Ω)	C1	
		resistance of $R_1 = 272.7 - 113.6 = 160 (159)\Omega$	A1	
		or		
		p.d. across diode = $0.5V$ and p.d. across $R_1 = 0.7V$	(C1)	
		resistance of R ₁ = $0.7/4.4 \times 10^{-3}$ = $160 (159)\Omega$	(A1)	[2]
(i	ii)	power = IV or I^2R or V^2/R	C1	
	•	ratio = $(4.4 \times 0.5)/(3.2 \times 1.2)$ or $[(4.4)^2 \times 114]/[(3.2)^2 \times 375]$		
		or $[(0.5)^2 \times 375]/[114 \times (1.2)^2]$ = 0.57	A1	[2]

 $247.\ 9702_s20_qp_21\ Q:\ 5$

	Answer	Mark
(a)(i)	$R = \rho L / A$	C1
	$A = (2.6 \times 10^{-8} \times 59) / 3.4 = 4.5 \times 10^{-7} \mathrm{m}^2$	A1
(a)(ii)	I = 1.8/3.4	A1
	= 0.53 A	
(a)(iii)	I = Anvq	C1
	$v = 0.53/(4.5 \times 10^{-7} \times 6.1 \times 10^{28} \times 1.60 \times 10^{-19})$	
	$= 1.2 \times 10^{-4} \mathrm{m s^{-1}}$	A1
(b)(i)	(cross-sectional) area/A is less	M1
	(I, n, e the same so) average drift speed is greater	A1
(b)(ii)	(area is less so) more resistance/R	M1
	(I is the same, so) more power/P	A1
	or	
	$(P = I^2 \rho L / A \text{ so}) P \propto 1 / A$	(M1)
	(A is less so) more P	(A1)
(c)(i)	180 Ω and 90 Ω resistors shown connected in parallel	B1
(c)(ii)	resistors connected in parallel labelled as 180 Ω and 90 Ω and the other resistor labelled as 30 Ω	M1
	V _{OUT} or 8.0 V labelled across the two resistors in parallel	A1

 $248.\ 9702_s15_qp_23\ \ Q:\ 5$

(a)
$$R = \rho l / A$$
 C1
 $= (5.1 \times 10^{-7} \times 0.50) / \pi (0.18 \times 10^{-3})^2 = 2.5 (2.51) \Omega$ M1 [2]
(b) (i) resistance of CD = $8 \times$ resistance of AB = $20 (\Omega)$ C1
circuit resistance = $[1/5.0 + 1/20]^{-1} = 4.0 (\Omega)$ C1

current =
$$V/R$$
 = 6.0/4.0

(ii) power in AB =
$$I^2R$$
 or power = V^2/R C1

=
$$(1.2)^2 \times 2.5 = 3.6 \text{ W}$$
 = $(3.0)^2/2.5 = 3.6 \text{ W}$ A1 [2]

(iii) potential drop A to M =
$$1.25 \times 1.2 = 1.5 \text{ V}$$

potential drop C to N =
$$3.0 \text{ V}$$

p.d. MN = 1.5 V A1 [2]

Α1

[4]

C1

249. $9702 w15 qp_2$ Q: 5

(a) (i) I = V/R

(= 240/1500 =) 0.16AΑ1 [2]

(ii) $I_2 = 0.40 - 0.16 (= 0.24)$ C1

0.24(350 + R) = 240

 $R = 650 \Omega$ Α1 [2]

(iii) power = IV or I^2R or V^2/R C1

ratio = $(84 \times 0.24)/(88 \times 0.16)$ or $[(0.24)^2 \times 350]/[(0.16)^2 \times 550]$ or $(84^2/350)/(88^2/550)$ or 20.16/14.08

= 1.4(3)

ridge **(b)** (i) p.d. across 350Ω resistor = 0.24×350 **or** p.d. across 550Ω resistor = 0.16×550

 V_{350} = 84 (V) and V_{550} = 88 (V) gives V_{AB} = 4.0 V or $V_{950} = 152$ (V) and $V_R = 156$ V gives $V_{AB} = 4.0$ V [2] Α1

(ii) p.d. across R increases or potential at B increases or V_{350} decreases hence $V_{\rm AB}$ increases В1 [1]

 $250.\ 9702_s20_qp_21\ Q:\ 6$

	Answer	Mark
(a)(i)	$E = \Delta V / \Delta d$	C1
	$E = (180 + 120)/(2.0 \times 10^{-2})$ $= 1.5 \times 10^{4} \text{ N C}^{-1}$	A1
(a)(ii)	vertically downwards	B1
(b)(i)	number of protons = 92	A1
_	number of neutrons = 146	A1
	number of electrons = 90	A1
(b)(ii)	F = EQ	C1
	= 1.5 × 10 ⁴ × 2 × 1.60 × 10 ⁻¹⁹	A1
	$= 4.8 \times 10^{-15} \mathrm{N}$	
(b)(iii)	number of α -particles = 2	A1
	number of β⁻ particles = 2	A1

$251.\ 9702_w20_qp_23\ Q\hbox{: }7$

	Answer	Mark
(a)(i)	electric field strength = V/d	B1
(a)(ii)	force = Vq/d	B1
(a)(iii)	kinetic energy = Vq	B1
(b)(i)	no change	B1
(b)(ii)	no change	B1
(c)(i)	nucleon number = 14 and proton number = 7	A1
(c)(ii)	(electron) antineutrino	B1

$252.\ 9702_w19_qp_22\ Q\hbox{:}\ 7$

	Answer	Mark
(a)	number of protons = 92	A1
	number of neutrons = 142	A1
(b)	$5.6 \text{ MeV} = 5.6 \times 1.60 \times 10^{-19} \times 10^6 \text{ (= } 8.96 \times 10^{-13} \text{ J)}$	C1
	number = $0.15/(5.6 \times 1.60 \times 10^{-13})$	A1
	= 1.7 × 10 ¹¹	
	or	
	$0.15 \text{ W} = 0.15 / (1.60 \times 10^{-19} \times 10^6) \ (= 9.38 \times 10^{11} \text{ MeV s}^{-1})$	(C1)
	number = 9.38 × 10 ¹¹ / 5.6	(A1)
	= 1.7 × 10 ¹¹	

$253.\ 9702_w19_qp_23\ Q\hbox{:}\ 7$

	Answer	Mark
(a)	number of protons = 95	A1
	number of neutrons = 146	A1
(b)	Np/neptunium (nuc <mark>leus) has <u>kinetic</u> energy or gamma/_Y-radiation produced</mark>	B1
(c)(i)	I = NQ/t	C1
•	$I = (6.9 \times 10^{11} \times 2 \times 1.60 \times 10^{-19})/30$ $= 7.4 \times 10^{-9} \text{ A}$	A1
(c)(ii)	$P = (6.9 \times 10^{11} \times 5.5 \times 10^{6} \times 1.60 \times 10^{-19})/30$	C1
	= 0.020 W	A1

 $254.\ 9702_m18_qp_22\ Q:\ 6$

	Answer	Mark
(a)	-1 / decreases by 1	A1
(b)	I = Q/t or Ne/t	
	= $(9.8 \times 10^{10} \times 1.6 \times 10^{-19}) / (2.0 \times 60)$ = 1.3×10^{-10} (A)	C1
	= 130 pA	A1
(c)	antineutrino(s) (emitted) / other particle(s) (emitted)	C1
	energy / momentum shared with antineutrino(s)	A1

 $255.\ 9702_w18_qp_21\ Q\hbox{:}\ 5$

	Answer	Mark
(a)	region (of space) where a force acts on a (stationary) charge	B1
(b)	E=FIQ	B1
	$F = ma$ and (so) $a = \frac{Eq}{m}$	A1
(c)(i)	protons = 96	A1
	neutrons = 148	A1
(c)(ii)	mass-energy is conserved/mass change is 'seen' as energy	B1
	energy released as gamma (radiation)/KE of a/KE of Pu	B1
(c)(iii)	ratio = $\frac{2}{4} \times \frac{240}{94}$ or ratio = $\frac{2 \times 1.60 \times 10^{-19}}{4 \times 1.66 \times 10^{-27}} \times \frac{240 \times 1.66 \times 10^{-27}}{94 \times 1.60 \times 10^{-19}}$	C1
	ratio = 1.3	A1

 $256.\ 9702_w18_qp_23\ Q\hbox{:}\ 5$

	Answer	Mark
(a)	E=F/Q	M1
	F = ma and (so) $q/m = a/E$	A1
(b)	$m = (4 \times 1.60 \times 10^{-19} \times 3.5 \times 10^{4})/1.5 \times 10^{12} (= 1.49 \times 10^{-26} \text{kg})$	B1
	$= 1.49 \times 10^{-26} / 1.66 \times 10^{-27} = 9.0 (\text{u})$	A1
(c)	protons: 4 and neutrons: 5	A1
(d)(i)	nuclei have the same charge and so same (magnitudes of) force	B1
(d)(ii)	nuclei have different masses and same force and so different (magnitudes of) acceleration	B1

 $257.\ 9702_m17_qp_22\ Q{:}\ 7$

	Answer	Mark
(a)	number of protons = 83 and number of neutrons = 129	A1
(b)	$\lambda = 3.8 \times 10^{-12}$	C1
	$f = 3.0 \times 10^8 / 3.8 \times 10^{-12}$	C1
	$f = 7.9 \times 10^{19} (7.89 \times 10^{19}) \text{Hz}$	A1
(c)	use an electric field (at an angle to the beam)	M1
	α is deflected $\underline{\text{and}}\ \gamma$ is undeflected	A1
(d)	either	
	energy = $9.3 \times 10^{-13}/1.8 \times 10^5$ (= 5.17×10^{-18} J)	C1
	$= 5.17 \times 10^{-18} / 1.6 \times 10^{-19}$ = 32 (32.3) eV	A1
	or	
	energy = $9.3 \times 10^{-13}/1.6 \times 10^{-19}$ (= 5.81×10^{6} eV)	(C1)
	$= 5.81 \times 10^{6} / 1.8 \times 10^{5}$ = 32 (32.3) eV	(A1)

 $258.\ 9702_w17_qp_23\ \ Q:\ 7$

	Answer	Mark
(a)	nucleons = 23	B1
	neutrons = 11	B1
(b)	similarity: same (rest) mass or equal (magnitude of) charge	B1
	difference: opposite (sign of) charge or one is matter and one is antimatter or one is an electron and one is an antielectron	B1

259. 9702_s15_qp_22 Q: 7

(a) 92 protons and 143 neutrons B1 [1]

(b)

	value		
a	1		
b	0	(a and b both required)	B1
С	141		B1
d	55		B1 [3]

(c) kinetic energy (of products) or gamma/ γ (radiation or photon) B1 [1]

(d) (total) mass on left-hand side/reactants is greater than (total) mass on right-hand side/products
 M1
 difference in mass is (converted to) energy
 A1 [2]

[1]

260. $9702_s15_qp_23$ Q: 7

(a)	(i)	(rate of decay) not affected by any external factors or changes in	
		temperature and pressure etc.	B1

(may also be some γ radiation) (to conserve mass-energy)

(ii)
$$(6.2 \times 10^6 \times 1.6 \times 10^{-19}) 9.9(2) \times 10^{-13} \text{ J}$$
 A1 [1]

 $261.\ 9702\ \ w15\ \ qp\ \ 21\ \ Q{:}\ 7$

(ii) range of α -particle is only few cm in air/loss of energy of the α -particles due to collision with air molecules/ionisation of the air molecules В1

(iii)
$$V = E \times d$$

=
$$140 \times 10^6 \times 12 \times 10^{-3} = 1.7 (1.68) \text{MV}$$
 A1 [2]

(b) β have opposite charge to α therefore deflection in opposite direction В1

 β has a range of velocities/energies hence number of different deflections

B1

 β have less mass or q/m is larger hence deflection is greater

 β with (very) high speed (may) have less deflection [3] В1

(c)

emitted particle	change in Z	change in A
α-particle	-2	-4
β-particle	+1	0

Α1 [1]

262. 9702 w15 qp 22 Q: 8

(a)	result: majority/most (of the α -particles) went straight through/were deviated by	
	small angles	M1

conclusion: most of the atom is (empty) space or size/volume of nucleus very small compared with atom

Α1

result: a small proportion were deflected through large angles or >90° or came straight back

M1

conclusion: the mass or majority of mass is in a (very) small charged volume/region/nucleus

Α1 [4]

(b)
$$\rho = m/V$$

mass of atom and mass of nucleus (approx.) equal stated or cancelled or values given e.g. 63 u or $63 \times 1.66 \times 10^{-27}$

ratio =
$$(r_A)^3/(r_N)^3$$
 = $(1.15 \times 10^{-10})^3/(1.4 \times 10^{-14})^3$
or
ratio = $(d_A)^3/(d_N)^3$ = $(2.3 \times 10^{-10})^3/(2.8 \times 10^{-14})^3$
= 5.5×10^{11}
 $(2_w15_qp_23)$ Q: 8
mass-energy
proton number or charge
nucleon number

Α1 [3]

263. $9702 w15 qp_23 Q: 8$

(a) mass-energy proton number or charge nucleon number

B2 [2]

(b) (i) $E_k = \frac{1}{2} mv^2$ and p = mv with working leading to

[via
$$E_k = \frac{1}{2}m^2v^2/m$$
 or $\frac{1}{2}m(p/m)^4$
to $E_k = \frac{p^2}{2m}$

В1 [1]

(ii)
$$p = (2E_k m)^{\frac{1}{2}}$$
 hence $(2[E_k m]_{\alpha})^{\frac{1}{2}} = (2[E_k m]_{Th})^{\frac{1}{2}}$

$$2 \times [E_k]_{Th} \times 234 = 2 \times 6.69 \times 10^{-13} \times 4$$

$$[E_k]_{Th} = 1.14 \times 10^{-14} \text{ J}$$

= 71(.5) keV

A1

or

calculation of speed of α -particle = $1.42 \times 10^7 \,\mathrm{m \, s}^{-1}$ calculation of momentum of α -particle/nucleus = $9.43 \times 10^{-20} \, \text{N s}$ (C1)

$$[E_k]_{Th}$$
 = 1.14 × 10⁻¹⁴ J (C1)
= 71(.5) keV (A1)

(A1)

[3]

 $264.\ 9702_m20_qp_22\ Q:\ 7$

	Answer	Mark
(a)	made up of quarks (so) not a fundamental particle	B1
(b)(i)	beta plus / β+ (particle)	B1
	(electron) neutrino / ν _(e)	B1
(b)(ii)	kinetic energy of nucleus	B1
	gamma / γ radiation	B1

265. 9702_s20_qp_22 Q: 7

	Answer	Mark
(a)(i)	P=0 and Q=39	A1
	R = (+)1 and S = 20	A1
(a)(ii)	weak (nuclear force/interaction)	B1
(b)	charge of quark(s) = (+) 2e/3	B1
	up/u (quarks)	B1

 $266.\ 9702_s20_qp_23\ Q\hbox{:}\ 7$

		Answer	Mark
(a)(i)	E = V/d or $E = F/Q$	NO.	C1
	$F = (450 \times 1.60 \times 10^{-19}) / 6.0 \times 10^{-3}$		C1
	= 1.2 × 10 ⁻¹⁴ N		A1
	direction: vertically downwards		B1

	Answer	Mark
(a)(ii)	work done = Fs or Fd or EQd	C1
	$= (-)1.2 \times 10^{-14} \times 6.0 \times 10^{-3}$ $= (-)7.2 \times 10^{-17} \text{ J}$	A1
	or	
	work done = VQ	(C1)
	$= (-)450 \times 1.60 \times 10^{-19}$ $= (-)7.2 \times 10^{-17} \text{ J}$	(A1)
(b)	E = ½mv²	C1
	$3.4 \times 10^{-16} = \frac{1}{2} \times 9.11 \times 10^{-31} \times v^2$ $v = 2.7 \times 10^7 \mathrm{m s^{-1}}$	A1
(c)(i)	¹p	A1
	$\begin{smallmatrix} 0-\\0V(\mathbf{e})\end{smallmatrix}$	A1
(c)(ii)	1. hadrons	B1
	2. leptons	B1

	Answer	Mark
(a)	similarity: same/equal mass or same/equal (magnitude of) charge or both fundamental (particles)	B1
	difference: opposite (sign of) charge or one is matter and the other is antimatter	B1
(b)(i)	number of protons = 13 and number of neutrons = 12	A1
(b)(ii)	(charge =) $13 \times 1.60 \times 10^{-19}$ (C) = 2.1×10^{-18} (C)	A1
(c)	force = $11 \times 10^3 \times 2.1 \times 10^{-18}$	C1
	work done = $11 \times 10^3 \times 2.1 \times 10^{-18} \times 0.04$	C1
	= 9.2 × 10 ⁻¹⁶ J	A1

 $268.\ 9702_w20_qp_22\ Q\hbox{:}\ 7$

	Answer	Mark
(a)	similarity: same/equal mass or same/equal (magnitude of) charge or both fundamental (particles)	B1
	difference: opposite (sign of) charge or one is matter and the other is antimatter	B1
(b)(i)	arrow points to the right	B1
(b)(ii)	(electric) field strength increases or (electric) force increases	B1
	acceleration increases	B1
(b)(iii)	force (on α -particle) has twice the magnitude (of force on electron)	B1
	force (on α -particle) is in opposite direction (to force on electron)	B1

269. 9702_m19_qp_22 Q: 7

	Answer	Mark
(a)(i)	alpha, neutron and proton	B1
(a)(ii)	neutron	B1
(a)(iii)	beta plus or β+	B1
(b)	d has charge (+)⅓ e	C1
	(so) other quark has charge $= e - \frac{1}{3}e$ = $(+)\frac{9}{3}e$	M1
	other quark is an up / u	A1

 $270.\ 9702_s19_qp_21\ Q:\ 7$

	Answer	Mark
(a)	nucleus is charged	B1
	the mass is <u>concentrated</u> in (very small) nucleus or the <u>majority</u> of the mass is in (very small) nucleus	B1
(b)(i)	-(1 / 3)e	B1
(b)(ii)	2q - (1/3)e = e so $q = (2/3)e$	M1
	up / u (quarks) (allow charm or top quarks)	A1

 $271.\ 9702_s19_qp_22\ Q{:}\ 6$

	Answer	Mark
(a)	path/direction in which a (free) positive charge will move	B1
(b)	(lines) closer together in Y/further apart in X	B 1
(c)(i)	a = Eq/m	C1
	or	
	F=Eq and F=ma	
	ratio = (1e / 0.15 u) × (4 u / 2e) or 1/0.15 × 4/2	C1
	ratio = 13	A1
(c)(ii)	down quark charge is –(1/3)e	C1
	-(1/3)e + q = -1e so $q = -(2/3)e$	A1
	(–(2/3)e is) anti-up/ u (quark) (allow charm or top antiquark)	B1

272. 9702_s19_qp_23 Q: 7

	Answer	Mark
(a)	beta/β	B1
(b)	alpha/α	B1
(c)	gamma/γ	B1
(d)	beta/β	B1

273. 9702_w19_qp_21 Q: 7

4	Answer	Mark
(a)(i)	proton number = 17 and nucleon number = 35	A1
(a)(ii)	(electron) neutrino	В1
(b)	d/down (quark charge) is $-\frac{1}{3}$ (e) or two d/down (quark charges) is $-\frac{2}{3}$ (e) or s/strange (quark charge) is $-\frac{1}{3}$ (e)	C1
	charge = $-\frac{1}{3}(e) - \frac{1}{3}(e) - \frac{1}{3}(e)$ = $-1(e)$	A1

$274.\ 9702_s18_qp_21\ Q\hbox{:}\ 7$

	Answer	Mark
(a)	arrow pointing vertically down the page	B1
(b)	$E = \frac{1}{2}mv^2$	C1
	$E = 460 \times 1.60 \times 10^{-19} \ (= 7.36 \times 10^{-17} \ (J))$	C1
	$v = [(2 \times 460 \times 1.60 \times 10^{-19})/(9.11 \times 10^{-31})]^{\frac{1}{2}}$	A1
	$= 1.3 \times 10^7 \text{ms}^{-1}$	
(c)	β ⁻ particles have range of/different/various speeds/velocities/momenta/energies	M1
	so they follow different paths	A1

$275.\ 9702_s18_qp_22\ Q\hbox{:}\ 7$

	Answer	Mark
(a)	circle(s) drawn only around eta^- and $\overline{ u}$ symbols	B1
(b)	(electron) antineutrino	B1
(c)	kinetic (energy)	B1
(d)	Y has one more proton (and one less neutron)/X has one less proton (and one more neutron) or Y has more protons (and fewer neutrons)/X has fewer protons (and more neutrons) or a neutron changes to a proton or the number of protons increases	M1
	(so) not isotopes	A1
(e)	up down down changes to up up down or udd \rightarrow uud or down changes to up or d \rightarrow u	B1

$276.\ 9702_s18_qp_23\ Q\hbox{:}\ 7$

	Answer	Mari
(a)(i)	Q plotted at (82, 210)	A
(a)(ii)	R plotted at (83, 210)	A
(b)	lepton(s)	В
(c)	up down down changes to up up down or udd \rightarrow uud or down changes to up or d \rightarrow u	В

277. 9702_w18_qp_22 Q: 8

	Answer	Mark
(a)	antineutrino and positron both underlined (and no other particles)	B1
(b)(i)	nucleon number = 27	A1
	proton number = 13	A1
(b)(ii)	weak (nuclear force/interaction)	B1
(b)(iii)	an (electron) antineutrino / $\overline{v}_{(\mathrm{e})}$ is produced (and this has energy)	B1
	X has kinetic energy	B1

 $278.\ 9702_s17_qp_21\ Q:\ 7$

		Ans	wer		Mark
(a)(i)	(proton is uud so) (2/3)e + (2/3)e - (1/3)e	(proton is uud so) (2/3)e + (2/3)e - (1/3)e = e			В1
(a)(ii)	(neutron is udd so) (2/3)e - (1/3)e -(1/3	3)e = 0			В1
(b)(i)			β-	β ⁺	В1
	nuc	cleon number	90	64	
	pro	oton number	39	28	
	all correct				
(b)(ii)	weak (nuclear force/interaction)				B1
(b)(iii)	β^- decay: electron and (electron) antineutrin β^+ decay: positron and (electron) neutrino all correct	no			В1

 $279.\ 9702_s17_qp_22\ Q:\ 8$

	Answer	~	Mark
(a)	β^- emission: neutron changes to proton (+ beta ⁻ /electron) and β^+ emission: proton changes to neutron (+ beta ⁺ /positron)	29	B1
	β^- emission: (electron) antineutrino also emitted and β^+ emission: (electron) neutrino also emitted		B1
(b)	proton: up up down (and zero strange)	10	B1
	neutron: up down down (and zero strange)		

280. 9702_s17_qp_23 Q: 7

	Answer	Mark
(a)	electron and quark both underlined/clearly indicated and no others	B1
(b)(i)	value	B1
	A 60	
	B 28	
	both correct	
(b)(ii)	(electron) antineutrino	B1

281. 9702_w17_qp_21 Q: 8

			Answer	Mark
(a)	(quark st	tructure is) <mark>up, do</mark> wn,	down/udd	B1
	up/u has	charge +⅔(<i>e</i>), down	/d has charge −1/₃(e)	C1
	+2/3e -1/36	e −1⁄₃e = 0		A1
(b)	charge:	$\begin{array}{ll} p & +1.6(0)\times 10^{-19} \\ \beta^- & -1.6(0)\times 10^{-19} \\ \bar{\nu} & zero/0 \end{array}$	(C) or +e (C) or -e	B1
	mass:	p 1.67×10^{-27} (kg) $\beta^ 9.1(1) \times 10^{-31}$ (k ν very small/zero/	g)	B1

	Answer	Mark
(a)	lepton(s)	B1
(b)	protons: 7 and neutrons: 6	A1
(c)	$E = \frac{1}{2}mv^2$	C1
	$= 0.80 \times 10^{6} \times 1.60 \times 10^{-19}$	C1
	$= 1.28 \times 10^{-13} (J)$	A1
	$v^2 = 2 \times 1.28 \times 10^{-13} / 2.2 \times 10^{-26}$	
	$v = 3.4 \times 10^6 \mathrm{m}\mathrm{s}^{-1}$	
(d)	an (electron) neutrino/v _(e) is also produced (and this has energy)	B1

285. 9702 s16 qp 22 Q: 8

(a) both electron and neutrino: lepton(s) В1

both neutron and proton: hadron(s)/baryon(s) В1 [2]

(b) (i) ${}^{1}p \rightarrow {}^{1}n + {}^{0}{}_{1}\beta + {}^{0}{}_{0}\nu$

correct symbols for particles M1

correct numerical values (allow no values on neutrino) Α1 [2]

(ii) up up down or uud \rightarrow up down down or udd **B**1 [1]

(iii) weak (nuclear) В1 [1]

286. 9702 s16 qp 23 Q: 8

(a) α -particle is 2 protons and 2 neutrons; β^+ -particle is positive electron/positron α -particle has charge +2e; β ⁺-particle has +e charge α -particle has mass 4u; β -particle has mass (1/2000)u α -particle made up of hadrons; β ⁺-particle a lepton

any three B3 [3]

(b) ${}^{1}_{1}p \rightarrow {}^{1}_{0}n + {}^{0}_{1}\beta + {}^{0}_{0}\nu$

all terms correct M1

all numerical values correct (ignore missing values on ν) Α1 [2]

(c) (i) 1. proton: up, up, down/uud **B**1

2. neutron: up, down, down/udd [2] В1

(ii) up quark has charge +2/3 (e) and down quark has charge -1/3 (e) total is +1(e) В1

[1]

287. 9702_w16_qp_21 Q: 7

(a)	or	ron not a fundamental particle/lepton is fundamental particle		
	or	ong force/interaction acts on hadrons/does not act on leptons	B1	[1]
(b)	(i)	proton: up, up, down/uud neutron: up, down, down/udd	B1 B1	[2]
	(ii)	composition: 2(uud) + 2(udd) = 6 up, 6 down/6u, 6d	B1	[1]
(c)	(i)	most of the atom is empty space or the nucleus (volume) is (very) small compared to the atom	B 1	[1]
	(ii)	nucleus is (positively) charged the mass is concentrated in (very small) nucleus/small region/small volume/small core	В1	
		or the majority of mass in (very small) nucleus/small region/small volume/small core	B1	[2]

288. 9702 w16 qp 22 Q: 6

(a) hadron not a fundamental particle/lepton is fundamental particle or

hadron made of quarks/lepton not made of quarks

or

strong force/interaction acts on hadrons/does not act on leptons

B1 [1]

(b) (i) ${}^0_1e^{(+)}$ or ${}^0_1\beta^{(+)}$

or ${}^{0}_{1}\beta^{(+)}$ B1

 $^{
m 0}_{
m 0}
u_{
m (e)}$

B1

(ii) weak (nuclear force / interaction)

B1 [1]

[2]

- (iii) mass-energy
 - momentum
 - proton number
 - nucleon number
 - charge

Any three of the above quantities, 1 mark each

B3 [3]

(c) (quark structure of proton is) up, up, down or uud

B1

up/u (quark charge) is (+)%(e), down/d (quark charge) is -1/3(e)

C1

$$\frac{2}{3}e + \frac{2}{3}e - \frac{1}{3}e = (+)e$$

A1 [3]

289. 9702 w16 qp 23 Q: 7

(a) hadron not a fundamental particle/lepton is fundamental particle

hadron made of quarks/lepton not made of quarks

or

strong force/interaction acts on hadrons/does not act on leptons

B1

[1]

[2]

(b) (i) proton: up, up, down/uud neutron: up, down, down/udd

B1 B1

- (ii) composition: 2(uud) + 2(udd)
 - = 6 up, 6 down/6u, 6d

B1 [1]

(c) (i) most of the atom is empty space

or

the nucleus (volume) is (very) small compared to the atom

B1 [1]

(ii) nucleus is (positively) charged

В1

the mass is concentrated in (very small) nucleus/small region/small volume/small core

or

the majority of mass in (very small) nucleus/small region/small volume/small core

B1 [2]

PapaCambridge